Skip to main content

Adiabatic Quantum Computation for Cyber Attack and Defense Strategies

  • Conference paper
  • First Online:
New Trends in Computer Technologies and Applications (ICS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1723))

Included in the following conference series:

  • 683 Accesses

Abstract

Cyber security has become increasingly important in today’s world widely connected by the Internet. Many important problems in the cyber security domain can be framed as optimization problems. Recently there has been much progress in applying quantum annealing to solve optimization problems in various application domains. In this article quantum annealing is shown to solve hard problems in cyber security from the perspectives of both attack and defense. In the process a few new techniques for QUBO construction are also illustrated and can potentially be used to solve problems in other application domains.

Supported by Thailand Research Fund grant number RSA6080029.

S. Kantabutra—Ineligible for the best student paper award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnarsson, G., Greenlaw, R., Kantabutra, S.: On cyber attacks and the maximum-weight rooted-subtree problem. Acta Cybernet. 22, 591–612 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agnarsson, G., Greenlaw, R., Kantabutra, S.: The structure of rooted weighted trees modeling layered cyber-security systems. Acta Cybernet. 22(4), 25–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. U.S.A. 107, 12446–50 (2010)

    Article  MATH  Google Scholar 

  4. Baldassi, C., Zecchina, R.: Efficiency of quantum vs. classical annealing in nonconvex learning problems. Proc. Natl. Acad. Sci. 115(7), 1457–1462 (2018)

    Google Scholar 

  5. Bapst, V., Foini, L., Krzakala, F., Semerjian, G., Zamponi, F.: The quantum adiabatic algorithm applied to random optimization problems: the quantum spin glass perspective. Phys. Rep. 523(3), 127–205 (2013)

    Article  MathSciNet  Google Scholar 

  6. Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J.S., Ronagh, P.: Reinforcement learning using quantum Boltzmann machines, vol. 18, no. 1–2, pp. 51–74 (2018)

    Google Scholar 

  7. van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–287 (2001)

    Google Scholar 

  8. Dickson, N., Amin, M.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106(5), 050502 (2011)

    Article  Google Scholar 

  9. Dixit, V., et al.: Training a quantum annealing based restricted Boltzmann machine on cybersecurity data. IEEE Trans. Emerg. Top. Comput. Intell. 6, 417–428 (2022)

    Article  Google Scholar 

  10. Farhi, E., Goldstone, J., Gosset, D., Gutmann, S., Shor, P.: Unstructured randomness, small gaps and localization. Quantum Inf. Comput. 11(9–10), 840–854 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994)

    Article  Google Scholar 

  12. Ganesan, R., Jajodia, S., Cam, H.: Optimal scheduling of cybersecurity analysts for minimizing risk. ACM Trans. Intell. Syst. Technol. 8, 1–32 (2017)

    Google Scholar 

  13. Gilyén, A., Hastings, M.B., Vazirani, U.: (Sub)Exponential advantage of adiabatic quantum computation with no sign problem, pp. 1357–1369. Association for Computing Machinery, New York (2021)

    Google Scholar 

  14. Hen, I., Young, A.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84, 061152 (2011)

    Article  Google Scholar 

  15. Henderson, M., Novak, J., Cook, T.: Leveraging quantum annealing for election forecasting. J. Phys. Soc. Jpn. 88(6), 061009 (2019)

    Article  Google Scholar 

  16. Hernandez, M., Aramon, M.: Enhancing quantum annealing performance for the molecular similarity problem. Quantum Inf. Process. 16(5), 1–27 (2017). https://doi.org/10.1007/s11128-017-1586-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, F., et al.: Quantum computing cryptography: finding cryptographic boolean functions with quantum annealing by a 2000 qubit D-wave quantum computer. Phys. Lett. A 384(10), 126214 (2020)

    Article  Google Scholar 

  18. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)

    Article  Google Scholar 

  19. Jörg, T., Krzakala, F., Semerjian, G., Zamponi, F.: First-order transitions and the performance of quantum algorithms in random optimization problems. Phys. Rev. Lett. 104, 207206 (2010)

    Article  Google Scholar 

  20. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998)

    Article  Google Scholar 

  21. Keplinger, K.: Is quantum computing becoming relevant to cyber-security? Netw. Secur. 2018(9), 16–19 (2018)

    Article  Google Scholar 

  22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, R., Di Felice, R., Rohs, R., Lidar, D.: Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 4, 14 (2018)

    Article  Google Scholar 

  24. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2 (2014)

    Google Scholar 

  25. Mezard, M., M.A.: Information, Physics, and Computation, p. 569. Oxford University Press Inc., Oxford (2009)

    Google Scholar 

  26. Monasson, R.: Optimization problems and replica symmetry breaking in finite connectivity spin glasses. J. Phys. A: Math. Gen. 31(2), 513–529 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Monasson, R., Zecchina, R.: Statistical mechanics of the random \(k\)-satisfiability model. Phys. Rev. E 56, 1357–1370 (1997)

    Article  MathSciNet  Google Scholar 

  28. Mukdasanit, S., Kantabutra, S.: Attack and defense in the layered cyber-security model and their (1 \(\pm \)\({\varepsilon }\))-approximation schemes. J. Comput. Syst. Sci. 115, 54–63 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 1–6 (2017)

    Article  Google Scholar 

  30. Ohzeki, M., Miki, A., Miyama, M.J., Terabe, M.: Control of automated guided vehicles without collision by quantum annealer and digital devices. Front. Comput. Sci. 1, 1–9 (2019)

    Article  Google Scholar 

  31. Okimoto, T., Ikegai, N., Inoue, K., Okada, H., Ribeiro, T., Maruyama, H.: Cyber security problem based on multi-objective distributed constraint optimization technique. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop (DSN-W), pp. 1–7 (2013)

    Google Scholar 

  32. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2, 571 (2012)

    Article  Google Scholar 

  33. Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., de Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10(6), 1053–1060 (2016)

    Article  Google Scholar 

  34. Santoro, G.E., Martoňák, R., Tosatti, E., Car, R.: Theory of quantum annealing of an ising spin glass. Science 295(5564), 2427–2430 (2002)

    Article  Google Scholar 

  35. D-Wave Systems Inc.: D-Wave Problem-Solving Handbook. D-Wave Systems Inc

    Google Scholar 

  36. Vamvoudakis, K.G., Hespanha, J., Kemmerer, R., Vigna, G.: Formulating cyber-security as convex optimization problems. In: Tarraf, D. (ed.) Control of Cyber-Physical Systems, vol. 449, pp. 85–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-01159-2_5

    Chapter  MATH  Google Scholar 

  37. Venturelli, D., Marchand, D., Rojo, G.: Quantum annealing implementation of job-shop scheduling, pp. 25–34 (2016)

    Google Scholar 

  38. Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling-salesman problem. Phys. Rev. E 70, 057701 (2004)

    Article  Google Scholar 

  39. Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why is optimization difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00267-0_1

    Chapter  Google Scholar 

  40. Zhang, Y., Malacaria, P.: Optimization-time analysis for cybersecurity. IEEE Trans. Dependable Secure Comput. 19, 2365–2383 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanpawat Kantabutra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kantabutra, S. (2022). Adiabatic Quantum Computation for Cyber Attack and Defense Strategies. In: Hsieh, SY., Hung, LJ., Klasing, R., Lee, CW., Peng, SL. (eds) New Trends in Computer Technologies and Applications. ICS 2022. Communications in Computer and Information Science, vol 1723. Springer, Singapore. https://doi.org/10.1007/978-981-19-9582-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9582-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9581-1

  • Online ISBN: 978-981-19-9582-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics