Skip to main content

Synchronization in Coupled Harmonic Oscillator Systems Based on Sampled Position Data

  • Reference work entry
  • First Online:
Handbook of Real-Time Computing
  • 1439 Accesses

Abstract

A harmonic oscillator is a typical second-order spring-mass system exhibiting periodic motions. In the last decade, much effort has been devoted to the study on the synchronization in networks composed by a set of identical harmonic oscillators. Most of existing synchronization algorithms for coupled harmonic oscillators are developed based on relative velocity measurements. This chapter proposes two distributed synchronization protocols to solve the synchronization problem for a network of harmonic oscillators in continuous-time setting by utilizing current and past relative sampled position data between neighboring nodes, respectively. Some necessary and sufficient conditions in terms of coupling strength and sampling period are established to achieve synchronization in the network. By designing the coupling strength according to the nonzero eigenvalues of the Laplacian matrix of the network, it is shown that the synchronization problem of coupled harmonic oscillators can be solved if and only if the sampling period is taken from a sequence of disjoint open intervals. Interestingly, when the Laplacian matrix has some complex eigenvalues, it is found that the sampling period should be larger than a positive threshold, that is, any small sampling period less than this threshold will not lead to network synchronization. Numerical examples are given to illustrate the feasibility and the effectiveness of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • L. Ballard, Y. Cao, W. Ren, Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination. IET Control Theory Appl. 4(5), 806–816 (2010)

    Article  MathSciNet  Google Scholar 

  • Y. Cao, W. Ren, M. Egerstedt, Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. Automatica 48(8), 1586–1597 (2012)

    Article  MathSciNet  Google Scholar 

  • T. Chen, B.A. Francis, Optimal Sampled-Data Control Systems (Springer, London, 1995)

    Book  Google Scholar 

  • S. Cheng, J. C. Ji, J. Zhou, Infinite-time and finite-time synchronization of coupled harmonic oscillators. Phys. Scr. 84(3), art. no. 035006 (2011)

    Google Scholar 

  • P. De Lellis, M. di Bernardo, F. Garofalo, M. Porfiri, Evolution of complex networks via edge snapping. IEEE Trans. Circuits Syst. I 57(8), 2132–2143 (2010)

    Article  MathSciNet  Google Scholar 

  • P. De Lellis, M. di Bernardo, F. Garofalo, Adaptive pinning control of networks of circuits and systems in Lur’e form. IEEE Trans. Circuits Syst. I 60(11), 3033–3042 (2013)

    Article  Google Scholar 

  • E. Frank, On the zeros of polynomials with complex coefficients. Bull. Am. Math. Soc. 52(2), 144–157 (1946)

    Article  MathSciNet  Google Scholar 

  • Y. Gao, B. Liu, M. Zuo, T. Jiang, J. Yu, Consensus of continuous-time multiagent systems with general linear dynamics and nonuniform sampling. Math. Probl. Eng. 2013, art. no. 718759 (2013)

    Google Scholar 

  • E. Garcia, Y. Cao, D. W. Casbeer, Decentralized event-triggered consensus with general linear dynamics. Automatica 50(10), 2633–2640 (2014)

    Article  MathSciNet  Google Scholar 

  • Y. Hong, G. Chen, L. Bushnell, Distributed observers design for leader-following control of multi-agent networks. Automatica 44(3), 846–850 (2008)

    Article  MathSciNet  Google Scholar 

  • N. Huang, Z. Duan, G. Chen, Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63, 148–155 (2016)

    Article  MathSciNet  Google Scholar 

  • R. Jeter, I. Belykh, Synchronization in on-off stochastic networks: windows of opportunity. IEEE Trans. Circuits Syst. I 62(5), 1260–1269 (2015)

    Article  MathSciNet  Google Scholar 

  • M. Ji, G. Ferrari-Trecate, M. Egerstedt, A. Buffa, Containment control in mobile networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)

    Article  MathSciNet  Google Scholar 

  • A.N. Langville, W.J. Stewart, The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167(2), 429–447 (2004)

    Article  MathSciNet  Google Scholar 

  • C.Q. Ma, J.F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Autom. Control 55(5), 1263–1268 (2010)

    Article  MathSciNet  Google Scholar 

  • Z. Meng, Z. Li, A.V. Vasilakos, S. Chen, Delay-induced synchronization of identical linear multiagent systems. IEEE Trans. Cybern. 43(2), 476–489 (2013)

    Article  Google Scholar 

  • R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  • P.C. Parks, V. Hahn, Stability Theory (Prentice Hall, New York, 1993)

    MATH  Google Scholar 

  • L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Article  Google Scholar 

  • M. Porfiri, D. J. Stilwell, Consensus seeking over random weighted directed graphs. IEEE Trans. Autom. Control 52(9), 1767–1773 (2007)

    Article  MathSciNet  Google Scholar 

  • M. Porfiri, D.J. Stilwell, E.M. Bollt, Synchronization in random weighted directed networks. IEEE Trans. Circuits Syst. I 55(10), 3170–3177 (2008)

    Article  MathSciNet  Google Scholar 

  • W. Ren, On consensus algorithms for double-integrator dynamics. IEEE Trans. Autom. Control 53(6), 1503–1509 (2008a)

    Article  MathSciNet  Google Scholar 

  • W. Ren, Synchronization of coupled harmonic oscillators with local interaction. Automatica 44(12), 3195–3200 (2008b)

    Article  MathSciNet  Google Scholar 

  • W. Ren, E. Atkins, Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)

    Article  MathSciNet  Google Scholar 

  • W. Ren, R.W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  • L. Scardovi, R. Sepulchre, Synchronization in networks of identical linear systems. Automatica 45(11) 2557–2562 (2009)

    Article  MathSciNet  Google Scholar 

  • Q. Song, F. Liu, J. Cao, W. Yu, Pinning-controllability analysis of complex networks: An M-matrix approach. IEEE Trans. Circuits Syst. I 59(11), 2692–2701 (2012)

    Article  MathSciNet  Google Scholar 

  • Q. Song, F. Liu, J. Cao, W. Yu, M-Matrix Strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics. IEEE Trans. Cybern. 43(6), 1688–1697 (2013)

    Google Scholar 

  • Q. Song, W. Yu, J. Cao, F. Liu, Reaching synchronization in networked harmonic oscillators with outdated position data. IEEE Trans. Cybern. 46(7), 1566–1578 (2016a)

    Article  Google Scholar 

  • Q. Song, F. Liu, G. Wen, J. Cao, Y. Tang, Synchronization of coupled harmonic oscillators via sampled position data control. IEEE Trans. Circuits Syst. I 63(7), 1079–1088 (2016b)

    Article  MathSciNet  Google Scholar 

  • Q. Song, F. Liu, J. Cao, A. V. Vasilakos, Y. Tang, Leader-following synchronization of coupled homogeneous and heterogeneous harmonic oscillators based on relative position measurements. IEEE Trans. Control Network Syst. 6(1), 13–23 (2019)

    Article  MathSciNet  Google Scholar 

  • H. Su, X. Wang, Z. Lin, Synchronization of coupled harmonic oscillators in a dynamic proximity network. Automatica 45(10), 2286–2291 (2009)

    Article  MathSciNet  Google Scholar 

  • W. Sun, J. Lü, S. Chen, X. Yu, Synchronisation of directed coupled harmonic oscillators with sampled-data. IET Control Theory Appl. 8(11), 937–947 (2014)

    Article  MathSciNet  Google Scholar 

  • S.E. Tuna, Conditions for synchronizability in arrays of coupled linear systems. IEEE Trans. Autom. Control 54(10), 2416–2420 (2009)

    Article  MathSciNet  Google Scholar 

  • G. Wen, Z. Duan, W. Ren, G. Chen, Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications. Int. J. Robust Nonlinear Control 24(16), 2438–2457 (2014a)

    Article  MathSciNet  Google Scholar 

  • G. Wen, W. Yu, M.Z. Chen, X. Yu, G. Chen, \(\mathcal {H}_\infty \) pinning synchronization of directed networks with aperiodic sampled-data communications. IEEE Trans. Circuits Syst. I 61(11), 3245–3255 (2014b)

    Google Scholar 

  • C. Xu, Y. Zheng, H. Su, H. O. Wang, Containment control for coupled harmonic oscillators with multiple leaders under directed topology. Int. J. Control 88(2), 248–255 (2015)

    Article  MathSciNet  Google Scholar 

  • W. Yu, G. Chen, M. Cao, Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)

    Article  MathSciNet  Google Scholar 

  • H. Zhang, J. Zhou, Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Syst. Control Lett. 61(12), 1277–1285 (2012)

    Article  MathSciNet  Google Scholar 

  • Y. Zhang, Y. Yang, Y. Zhao, Finite-time consensus tracking for harmonic oscillators using both state feedback control and output feedback control. Int. J. Robust Nonlinear Control 23(8), 878–893 (2013)

    Article  MathSciNet  Google Scholar 

  • A.M. Zheltikov, A harmonic-oscillator model of acoustic vibrations in metal nanoparticles and thin films coherently controlled with sequences of femtosecond pulses. Laser Phys. 12(3), 576–580 (2002)

    Google Scholar 

  • W. Zou, D.V. Senthilkumar, R. Nagao, I.Z. Kiss, Y. Tang, A. Koseska, J. Duan, J. Kurths, Restoration of rhythmicity in diffusively coupled dynamical networks. Nat. Commun. 6, art. no. 7709 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Song, Q., Liu, F., Wen, G., Cao, J., Tang, Y. (2022). Synchronization in Coupled Harmonic Oscillator Systems Based on Sampled Position Data. In: Tian, YC., Levy, D.C. (eds) Handbook of Real-Time Computing. Springer, Singapore. https://doi.org/10.1007/978-981-287-251-7_21

Download citation

Publish with us

Policies and ethics