Skip to main content

Eigenvector Orientation Corrected LeNet for Digit Recognition

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1022))

  • 722 Accesses

Abstract

Convolutional Neural Networks (CNNs) are being used popularly for detecting and classifying objects. Rotational invariance is not guaranteed by many of the existing CNN architectures. Many attempts have been made to acquire rotational invariance in CNNs. Our approach ‘Eigenvector Orientation Corrected LeNet (EOCL)’ presents a simple method to make ordinary LeNet [1] capable of detecting rotated digits, and also to predict the relative angle of orientation of digits with unknown orientation. The proposed method does not demand any modification in the existing LeNet architecture, and requires training with digits having only single orientation. EOCL incorporates an ‘orientation estimation and correction’ step prior to the testing phase. Using Principal Component Analysis, we find the maximum spread direction (Principal Component) of each test sample and then align it vertically. We demonstrate the improvement in classification accuracy and reduction in test time achieved by our approach, on rotated-MNIST [2] and MNIST_rot_12k test datasets, compared to other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

  2. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012). https://www.microsoft.com/en-us/research/publication/the-mnist-database-of-handwritten-digit-images-for-machine-learning-research/

  3. Santosh K.C.: Character recognition based on DTWRadon. In: International Conference on Document Analysis and Recognition (2011). https://doi.org/10.1109/ICDAR.2011.61

  4. Bhandare, A., Bhide, M., Gokhale, P., Chandavarka, R.: Applications of convolutional neural networks. Int. J. Comput. Sci. Inf. Technol. 7(5), 2206–2215 (2016)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 14(1), 234–778 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

  6. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Lecture Notes in Computer Science, vol. 3951(1), pp. 404–417. Springer, Berlin (2006). https://doi.org/10.1007/11744023_32

  7. Zhang, H., Li, Z., Liu, Y.: Fractional orthogonal Fourier-Mellin moments for pattern recognition. In: CCPR, vol. 662(1), 766–778. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-3002-4_62

  8. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic networks: deep translation and rotation equivariance. arXiv:1612.04642

  9. Marcos, D., Volpi, M., Komodakis, N., Tuia, D.: Rotation equivariant vector field networks. arXiv:1612.09346

  10. Kandi, H., Jain, A., Velluva Chathoth, S. et al.: Incorporating rotational invariance in convolutional neural network architecture. Pattern Anal. Appl. (2018). https://doi.org/10.1007/s10044-018-0689-0

  11. Jaderberg, M., Kimonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv:1506.02025

  12. Jain, A., Subrahmanyam, G.S., Mishra, D.: Stacked features based CNN for rotation invariant digit classification. In: Pattern Recognition and Machine Intelligence, 7th International Conference, PReMI Proceedings (2017). https://doi.org/10.1007/978-3-319-69900-4_67

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swetha, V.C., Mishra, D., Gorthi, S.S. (2020). Eigenvector Orientation Corrected LeNet for Digit Recognition. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-32-9088-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9088-4_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9087-7

  • Online ISBN: 978-981-32-9088-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics