Skip to main content

Blind Quality Assessment of PFA-Affected Images Based on Chromatic Eigenvalue Ratio

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1022))

  • 707 Accesses

Abstract

Quality assessment of Purple Fringing Aberrated (PFA) images remains an unsolved problem because the original untainted natural image of the scene is not available at the point of analysis. As a result, the problem assumes the form of a blind assessment. This PFA is a false coloration localized around the edge regions where the contrast differential is high. One can, therefore, surmise that if this coloration is largely homogeneous in the chrominance space, the edge is expected to be crisp and the image sharp and clear. However, if this coloration pattern is diverse in the chrominance space, the edges will be fuzzy and this, in turn, will have an impact on the visual clarity of the image. The fringe diversity, therefore, becomes a measure of PFA image quality, provided the fringes are distributed in several parts of the image. This diversity has been captured by first characterizing the chrominance space spanned by the PFA pixels and then using the eigenvalue ratio as a measure of color diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jang, D.W., Park, R.H.: Color fringe correction by the color difference prediction using the logistic function. IEEE Trans. Image Process. 26(5), 2561–2570 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ju, H.J., Park, R.H.: Colour fringe detection and correction in YCbCr colour space. IET Image Process. 7(4), 300–309 (2013). https://doi.org/10.1049/iet-ipr.2012.0524

    Article  MathSciNet  Google Scholar 

  3. Jung, C.D., Jang, D.W., Kim, H.S., Park, R.H.: Color fringe correction using guided image filtering. In: The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), pp. 1–2. IEEE (2014)

    Google Scholar 

  4. Kang, S.: Automatic removal of purple fringing from images. US Patent App. 11/322,736 (2007)

    Google Scholar 

  5. Karthik, K., Malik, P.: Purple fringing aberration detection based on content adaptable thresholds. In: International Conference on Smart Systems, Innovations and Computing (SSIC 2017) (2017)

    Google Scholar 

  6. Kim, B., Park, R.: Automatic detection and correction of purple fringing using the gradient information and desaturation. In: Proceedings of the 16th European Signal Processing Conference, vol. 4, pp. 1–5 (2008)

    Google Scholar 

  7. Kim, B.K., Park, R.H.: Detection and correction of purple fringing using color desaturation in the xy chromaticity diagram and the gradient information. Image Vis. Comput. 28(6), 952–964 (2010). https://doi.org/10.1016/j.imavis.2009.11.009

    Article  Google Scholar 

  8. Malik, P., Karthik, K.: Iterative content adaptable purple fringe detection. Signal Image Video Process. (2017). https://doi.org/10.1007/s11760-017-1144-1

  9. Malik, P., Karthik, K.: Limitation of PFA-events as a forensic tool. In: 4th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 3905–3908 (2017). https://doi.org/10.1109/SPIN.2017.8049940

  10. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012). https://doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  MATH  Google Scholar 

  11. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013). https://doi.org/10.1109/LSP.2012.2227726

    Article  Google Scholar 

  12. Tomaselli, V., Guarnera, M., Bruna, A.R., Curti, S.: Automatic detection and correction of purple fringing artifacts through a window based approach. In: 2011 IEEE International Conference on Consumer Electronics-Berlin (ICCE-Berlin), pp. 186–188. IEEE (2011)

    Google Scholar 

  13. WIKIPEDIA (Aug 2019) YCbCr. https://en.wikipedia.org/wiki/YCbCr

  14. Yerushalmy, I., Hel-Or, H.: Digital Image Forgery Detection Based on Lens and Sensor Aberration, vol. 92, pp. 71–91. Springer (2011)

    Google Scholar 

Download references

Acknowledgements

We thank Google Inc., particularly its image search section, for providing us with the links to several web-based discussions and forums involving PFA and its extreme effects, from which we obtained several exemplar PFA-corrupted images generated by several midrange cell phones for further quality analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Karthik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karthik, K., Malik, P. (2020). Blind Quality Assessment of PFA-Affected Images Based on Chromatic Eigenvalue Ratio. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-32-9088-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9088-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9087-7

  • Online ISBN: 978-981-32-9088-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics