Skip to main content

A Distribution Protocol for Dealerless Secret Distribution

  • Conference paper
  • First Online:
Fourth International Congress on Information and Communication Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1027))

  • 697 Accesses

Abstract

As the value of bitcoin increases, more incidents such as those involving Mt Gox and Bitfinex will occur in standard centralised systems. The addition of group-based threshold cryptography with the ability to be deployed without a dealer and which supports the non-interactive signing of messages provides for the division of private keys into shares that can be distributed to individuals and groups to provide additional security. This scheme creates a distributed key generation system for bitcoin that removes the necessity for any centralised control list minimising any threat of fraud or attack. In the application of threshold-based solutions for DSA to ECDSA, we have created an entirely distributive signature system for bitcoin that mitigates against any single point of failure. When coupled with retrieval schemes involving CLTV and multisig wallets, our solution provides an infinitely extensible and secure means of deploying bitcoin. Using group and ring-based systems, we can implement blind signatures against issued transactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A related research paper will detail how the process of ‘Determining a common secret for two blockchain nodes for the secure exchange of information,’ and the sharing of keys may be integrated.

  2. 2.

    In the case of bitcoin, the values are:

    Elliptic curve equation: \(y^{2} = x^{3} + 7\);

    Prime modulo: 2256 âˆ’ 232 âˆ’ 29 âˆ’ 28 âˆ’ 27 âˆ’ 26 âˆ’ 24 â€“ 1 = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F;

    Base point = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8 and

    Order = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141.

  3. 3.

    http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html. See also [21]. https://jeremykun.com/2015/09/07/welch-berlekamp/.

References

  1. Bar-Ilan, J.B.: Non-cryptographic fault-tolerant computing in a constant number of rounds. In: Proceedings of 8th PODC, pp. 201–209 (1989)

    Google Scholar 

  2. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    Google Scholar 

  3. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah… Just a Little Bit’’: a small amount of side channel can go a long way. In: Batina, L., Robshaw, M. (eds.) Cryptographic Hardware and Embedded Systems | CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

    Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC’88, pp. 1–10. ACM, New York (1988)

    Google Scholar 

  5. BIP 65. Github Homepage. https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki. Accessed 26 Jan 2019

  6. Chaum, D.: Blind signatures for untraceable payments (PDF). Adv. Cryptol. Proc. Crypto 82(3), 199–203 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Dawson, E., Donovan, D.: The breadth of Shamir’s secret-sharing scheme. Comput. Secur. 13, 69–78 (1994)

    Article  Google Scholar 

  8. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomerance, C. (ed.) A Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, CRYPTO’87, pp. 120–127. Springer, London (1987)

    Google Scholar 

  9. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proceedings of the 28th IEEE Annual Symposium on Foundations of Computer Science, pp. 427–437. Computer Society Press of the IEEE, Washington, DC (1987)

    Google Scholar 

  10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) Proceedings of the 15th Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’96, pp. 354–371. Springer, Berlin, Heidelberg (1996)

    Google Scholar 

  11. Ibrahim, M., Ali, I., Ibrahim, I., El-sawi, A.: A robust threshold elliptic curve digital signature providing a new verifiable secret sharing scheme. In: 2003 46th Midwest Symposium on Circuits and Systems, vol. 1, pp. 276–280. IEEE, Cairo (2003)

    Google Scholar 

  12. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

    Article  Google Scholar 

  13. Kapoor, V., Abraham, V.S., Singh, R.: Elliptic Curve Cryptography. ACM Ubiquity 9, 1–8 (2008)

    Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming, II: Seminumerical Algorithms, 3rd edn., p. 505. Addison-Wesley, Reading (1997)

    Google Scholar 

  15. Koblitz, N.: An elliptic curve implementation of the finite field digital signature algorithm. In: Advances in Cryptology—Crypto’98. Lecture Notes in Computer Science, vol. 1462, pp. 327–337. Springer, Berlin (1998)

    Google Scholar 

  16. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  17. National Institute of Standards and Technology: Digital Signature Standard (DSS). FIPS PUB 186-4 (2003). CSRC Homepage. https://csrc.nist.gov/publications/detail/fips/186/4/final. Accessed 26 Jan 2019

  18. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology—CRYPTO’91. LNCS, vol. 576, pp. 129–140. Springer, Berlin, Heidelberg (1992)

    Google Scholar 

  19. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC’89 Proceedings of the Twenty-First ACM Symposium on Theory of Computing, pp. 73–85. ACM, Seattle (1989)

    Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  21. Whittaker, E.T., Robinson, G.: Lagrange’s formula of interpolation. In: The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed., pp. 28–30. Dover, New York (1967) (Sect. 17)

    Google Scholar 

  22. Wright, C., Savanah, S.: Determining a Common Secret for the Secure Exchange of Information and Hierarchical, Deterministic Cryptographic Keys. International Patent Application Number: HRP20181373 (T1). WIPO. 2019/01/11. Espacenet Homepage. https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20190111&CC=HR&NR=P20181373T1&KC=T1. Accessed 26 Jan 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Wright .

Editor information

Editors and Affiliations

Appendix

Appendix

To compute \(\frac{{\beta = Exp - Interpolate(w_{i} , \ldots ,w_{n} )}}{Exp - Interpolate(\,)\quad \to *}\)

If \(\{ w_{i} , \ldots ,w_{n} \} (n \ge 2t + 1)\) is a set of values, such that at most, t are null and the remaining are of the form \(G \times a_{i}\) where the \(a_{i}\)’s lie on some \((k - 1)\)-degree Polynomial \(H( \cdot )\), then \(\beta = G \times H(\emptyset )\). This is computed using:

$$\begin{aligned} \beta & =\Sigma _{i \in v} w_{i} \times \lambda_{i} \\ & =\Sigma _{i \in v} (G \times H(i)) \times \lambda_{i} \\ \end{aligned}$$

where \(\nu\) is a \(k\)-subset of the correct \(w_{i}\)’s and \(\lambda_{i}\)’s are the corresponding Lagrange interpolation coefficients. For more background information, see the following: [7, 14, 16, 19, 22].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wright, C.S. (2020). A Distribution Protocol for Dealerless Secret Distribution. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Fourth International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 1027. Springer, Singapore. https://doi.org/10.1007/978-981-32-9343-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9343-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9342-7

  • Online ISBN: 978-981-32-9343-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics