Skip to main content

A Temporal-Causal Modelling Approach to Analyse the Dynamics of Burnout and the Effects of Sleep

  • Conference paper
  • First Online:
Fourth International Congress on Information and Communication Technology

Abstract

In this paper, a temporal-causal network model is introduced for a burnout in relation to sleep. The network model approach shows the impact of different lifestyle, personal and job factors on the development of a burnout. This model, for instance, can be used to schedule night shifts in order to preserve the needed recovery of exhaustive, irregular sleeping patterns or to investigate the effects of certain in lifestyles induced triggers on burnout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Åkerstedt, T., Wright, K.P.: Sleep loss and fatigue in shift work and shift work disorder. Sleep Med. Clin. 4(2), 257–271 (2009)

    Article  Google Scholar 

  2. Alarcon, G., Eschleman, K.J., Bowling, N.A.: Relationships between personality variables and burnout: a meta-analysis. Work Stress 23(3), 244–263 (2009)

    Article  Google Scholar 

  3. Borsboom, D., Cramer, A.O.: Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121 (2013)

    Article  Google Scholar 

  4. CBS, TNO: Psychosociale arbeidsbelasting (PSA) werknemers. Retrieved from http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLNL&PA=83049NED&LA=NL (2017)

  5. DePaepe, J., French, R., Lavay, B.: Burnout symptoms experienced among special physical educators: a descriptive longitudinal study. Adap. Phys. Act. Q. 2(3), 189–196 (1985)

    Google Scholar 

  6. Dujmić, Z., Machielse, E., Treur, J.: A temporal-causal modeling approach to the dynamics of a burnout and the role of physical exercise. In: Samsonovich, A.V. (ed.) Biologically Inspired Cognitive Architectures 2018: Proceedings of the 9th International Conference on Biologically Inspired Cognitive Architectures, BICA’18, vol. 1, Advances in Intelligent Systems and Computing, vol. 848, pp. 88–100. Springer (2019)

    Google Scholar 

  7. Emilia, I., Gómez-Urquiza, J.L., Cañadas, G.R., Albendín-García, L., Ortega-Campos, E., Cañadas-De la Fuente, G.A.: Burnout and its relationship with personality factors in oncology nurses. Eur. J. Oncol. Nurs. 30, 91–96 (2017)

    Google Scholar 

  8. Eschleman, K.J., Bowling, N.A., Alarcon, G.M.: A meta-analytic examination of hardiness. Int. J. Stress Manage. 17(4), 277–307 (2010)

    Article  Google Scholar 

  9. Huang, L., Zhou, D., Yao, Y., Lan, Y.: Relationship of personality with job burnout and psychological stress risk in clinicians. Chin. J. Ind. Hygiene Occup. Dis. 33(2), 84–87 (2015)

    Google Scholar 

  10. Kabadayi, A.: Investigating the burn-out levels of turkish preschool teachers. Proc.-Soc. Behav. Sci. 197, 156–160 (2015)

    Article  Google Scholar 

  11. Kuipers, B.J.: Commonsense reasoning about causality: deriving behavior from structure. Artif. Intell. 24, 169–203 (1984)

    Article  Google Scholar 

  12. Kuipers, B.J., Kassirer, J.P.: How to discover a knowledge representation for causal reasoning by studying an expert physician. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, IJCAI’83. William Kaufman, Los Altos, CA (1983)

    Google Scholar 

  13. Maslach, C., Jackson, S.E.: The measurement of experienced burnout. J. Organ. Behav. 2(2), 99–113 (1981)

    Article  Google Scholar 

  14. McGeary, C.A., Garcia, H.A., McGeary, D.D., Finley, E.P., Peterson, A.L.: Burnout and coping: veterans health administration posttraumatic stress disorder mental health providers. Psychol. Trauma: Theory Res. Pract. Policy 6(4), 390 (2014)

    Article  Google Scholar 

  15. Miró, E., Solanes, A., Martínez, P., Sanchez, A.I., Rodríguez, J.M.: Relationship between burnout, job strain, and sleep characteristics. Psicothema 19(3), 388–394 (2007)

    Google Scholar 

  16. Mohammadi Ziabari, S.S., Treur, J.: A modeling environment for dynamic and adaptive network models implemented in matlab. In: Proceedings of the Fourth International Congress on Information and Communication Technology, ICICT’19. Advances in Intelligent Systems and Computing. Springer (2019)

    Google Scholar 

  17. Pagnin, D., de Queiroz, V., Carvalho, Y.T.M.S., Dutra, A.S.S., Amaral, M.B., Queiroz, T.T.: The relation between burnout and sleep disorders in medical students. Acad. Psychiatry 38(4), 438–444 (2014)

    Google Scholar 

  18. Pearl, J.: Causality. Cambridge University Press (2000)

    Google Scholar 

  19. Pilcher, J.J., Huffcutt, A.I.: Effects of sleep deprivation on performance: a meta-analysis. Sleep 19(4), 318–326 (1996)

    Article  Google Scholar 

  20. Rosen, I.M., Gimotty, P.A., Shea, J.A., Bellini, L.M.: Evolution of sleep quantity, sleep deprivation, mood disturbances, empathy, and burnout among interns. Acad. Med. 81(1), 82–85 (2006)

    Article  Google Scholar 

  21. Söderström, M., Jeding, M., Akerstedt, T., Ekstedt, M., Perski, A.: Insufficient sleep predicts clinical burnout. J. Occup. Health Psychol. 17(2), 175–183 (2012)

    Article  Google Scholar 

  22. Sutin, A.R., Stephan, Y., Luchetti, M., Artese, A., Oshio, A., Terracciano, A.: The five-factor model of personality and physical inactivity: a meta-analysis of 16 samples. J. Res. Pers. 63, 22–28 (2016)

    Article  Google Scholar 

  23. Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive. Affective and Social Interactions. Springer, Cham (2016)

    Book  Google Scholar 

  24. Treur, J.: The ins and outs of network-oriented modeling: from biological networks and mental networks to social networks and beyond. Trans. Comput. Collect. Intell. 32, 120–139 (2019). Based on Keynote Lecture at the 10th International Conference on Computational Collective Intelligence, ICCCI’18 (2019)

    Google Scholar 

  25. Whitney, C.W., Enright, P.L., Newman, A.B., Bonekat, W., Foley, D., Quan, S.F.: Correlates of daytime sleepiness in 4578 elderly persons: the Cardiovascular Health Study (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik von Kentzinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

von Kentzinsky, H., Wijtsma, S., Treur, J. (2020). A Temporal-Causal Modelling Approach to Analyse the Dynamics of Burnout and the Effects of Sleep. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Fourth International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 1027. Springer, Singapore. https://doi.org/10.1007/978-981-32-9343-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9343-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9342-7

  • Online ISBN: 978-981-32-9343-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics