Skip to main content

Using K-Means Algorithm for Description Analysis of Text in RSS News Format

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2019)

Abstract

This article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for the processing of this type of data. This article shows the implementation of the K-means algorithm to determine the location of the news described in RSS format and the results of this type of grouping through a descriptive analysis of the resulting clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palechor, F., De la hoz manotas, A., De la hoz franco, E., Colpas, P: Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion detection systems. J. Theor. Appl. Inf. Technol. 82(2) (2015)

    Google Scholar 

  2. Calabria-Sarmiento, J.C., et al.: Software applications to health sector: a systematic review of literature (2018)

    Google Scholar 

  3. Sen, T., Ali, M.R., Hoque, M.E., Epstein, R., Duberstein, P.: Modeling doctor-patient communication with affective text analysis. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 170–177. IEEE (2017)

    Google Scholar 

  4. Jeon, S.W., Lee, H.J., Cho, S.: Building industry network based on business text: corporate disclosures and news. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4696–4704. IEEE (2017)

    Google Scholar 

  5. Irfan, M., Zulfikar, W.B.: Implementation of fuzzy C-Means algorithm and TF-IDF on English journal summary. In: 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1–5. IEEE (2017)

    Google Scholar 

  6. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access 6, 59192–59210 (2018)

    Article  Google Scholar 

  7. Zhang, X., Yu, Q.: Hotel reviews sentiment analysis based on word vector clustering. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 260–264. IEEE (2017)

    Google Scholar 

  8. Vieira, A.S., Borrajo, L., Iglesias, E.L.: Improving the text classification using clustering and a novel HMM to reduce the dimensionality. Comput. Methods Programs Biomed. 136, 119–130 (2016)

    Article  Google Scholar 

  9. Wu, H., Zou, B., Zhao, Y.Q., Chen, Z., Zhu, C., Guo, J.: Natural scene text detection by multi-scale adaptive color clustering and non-text filtering. Neurocomputing 214, 1011–1025 (2016)

    Article  Google Scholar 

  10. Palechor, F.M., De la Hoz Manotas, A., Colpas, P.A., Ojeda, J.S., Ortega, R.M., Melo, M.P.: Cardiovascular disease analysis using supervised and unsupervised data mining techniques. JSW 12(2), 81–90 (2017)

    Google Scholar 

  11. Aradhya, V.M., Pavithra, M.S.: A comprehensive of transforms, Gabor filter and k-means clustering for text detection in images and video. Appl. Comput. Inform. (2014)

    Google Scholar 

  12. Bharti, K.K., Singh, P.K.: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Appl. Soft Comput. 43, 20–34 (2016)

    Article  Google Scholar 

  13. Li, C.H.: Confirmatory factor analysis with ordinal data: comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 48(3), 936–949 (2016)

    Article  Google Scholar 

  14. Melissa, A., François, R., Mohamed, N.: Graph modularity maximization as an effective method for co-clustering text data. Knowl.-Based Syst. 109(1), 160–173 (2016)

    Google Scholar 

  15. Mendoza-Palechor, F.E., Ariza-Colpas, P.P., Sepulveda-Ojeda, J.A., De-la-Hoz-Manotas, A., Piñeres Melo, M.: Fertility analysis method based on supervised and unsupervised data mining techniques (2016)

    Google Scholar 

  16. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.L., Hao, H.: Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 174, 806–814 (2016)

    Article  Google Scholar 

  17. Shafiabady, N., Lee, L.H., Rajkumar, R., Kallimani, V.P., Akram, N.A., Isa, D.: Using unsupervised clustering approach to train the Support Vector Machine for text classification. Neurocomputing 211, 4–10 (2016)

    Article  Google Scholar 

  18. Zhang, W., Tang, X., Yoshida, T.: Tesc: an approach to text classification using semi-supervised clustering. Knowl.-Based Syst. 75, 152–160 (2015)

    Article  Google Scholar 

  19. De França, F.O.: A hash-based co-clustering algorithm for categorical data. arXiv preprint arXiv:1407.7753 (2014)

  20. Echeverri-Ocampo, I., Urina-Triana, M., Patricia Ariza, P., Mantilla, M.: El trabajo colaborativo entre ingenieros y personal de la salud para el desarrollo de proyectos en salud digital: una visión al futuro para lograr tener éxito (2018)

    Google Scholar 

  21. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  22. Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. In: SODA, vol. 99, pp. 291–299 (1999)

    Google Scholar 

  23. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS, pp. 873–879 (2000)

    Google Scholar 

  24. Jain, A.K., Dubes, R.C.: Algorithms for clustering data (1988)

    Google Scholar 

  25. Guerrero Cuentas, H.R., Polo Mercado, S.S., Martinez Royert, J.C., Ariza Colpas, P.P.: Trabajo colaborativo como estrategia didáctica para el desarrollo del pensamiento crítico (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ariza-Colpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ariza-Colpas, P., Oviedo-Carrascal, A.I., De-la-hoz-Franco, E. (2019). Using K-Means Algorithm for Description Analysis of Text in RSS News Format. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2019. Communications in Computer and Information Science, vol 1071. Springer, Singapore. https://doi.org/10.1007/978-981-32-9563-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9563-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9562-9

  • Online ISBN: 978-981-32-9563-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics