Skip to main content

Power Minimization in Wireless Powered Fog Computing Networks with Binary Offloading

  • Conference paper
  • First Online:
Wireless Sensor Networks (CWSN 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1321))

Included in the following conference series:

Abstract

This paper investigates the power minimization design for a multi-user wireless powered fog computing (FC) network, where a hybrid access point (HAP) (integrated with a fog server) charges the multiple energy-limited wireless sensor devices (WSDs) via wireless power transfer (WPT). With the harvested energy, each WSD accomplishes its computation task by itself or by the fog server with a binary offloading mode. A power minimization problem is formulated by jointly optimizing the time assignment (for WPT and tasks offloading) and the WSDs’ computation mode selection (local computing or FC) under constraints of energy causality and computation rate requirement. Due to the integer and coupling variables, the considered problem is non-convex and difficult to solve. With successive convex approximate (SCA) method, a threshold-based algorithm is designed in terms of the WSDs’ channel gains. Simulation results show that the proposed algorithm is able to achieve the same performance of the enumeration-based algorithm with very low computational complexity. Moreover, it is observed that the channel gains have a great impact on computation mode selection. Specifically, the WSDs with good channel gains prefer local computing while the WSDs with poor channel gains prefer FC, which is much different from the existing sum computation rate maximization designs.

This work was supported in part by ZTE Corporation, in part by the Self-developed project of State Grid Energy Research Institute Co., Ltd. (Ubiquitous Power Internet of Things Edge Computing Performance Analysis and Simulation Based on Typical Scenarios, No. SGNY202009014) and also in part by the Beijing Intelligent Logistics System Collaborative Innovation Center (No. BILSCIC-2019KF-07).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, W., Zhou, F., Hu, R.Q., Wang, B.: Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Trans. Commun. 68(1), 493–505 (2020)

    Article  Google Scholar 

  2. Zheng, H., Xiong, K., Fan, P., Zhong, Z., Letaief, K.B.: Fog-assisted multiuser SWIPT networks: local computing or offloading. IEEE Internet Things J. 6(3), 5246–5264 (2019)

    Article  Google Scholar 

  3. Barbarossa, S., Sardellitti, S., Lorenzo, P.D.: Communicating while computing: distributed mobile cloud computing over 5G heterogeneous networks. IEEE Sig. Process. Mag. 31(6), 45–55 (2014)

    Article  Google Scholar 

  4. Li, B., Zhang, Y., Xu, L.: An MEC and NFV integrated network architecture. ZTE Commun. 15(2), 19–25 (2017)

    Google Scholar 

  5. Xu, J., Zeng, Y., Zhang, Y.: UAV-enabled wireless power transfer: trajectory design and energy optimization. IEEE Trans. Wireless Commun. 17(8), 5092–5106 (2018)

    Article  Google Scholar 

  6. Zheng, H., Xiong, K., Fan, P., Zhou, L., Zhou, Z.: SWIPT-aware fog information processing: local computing vs. fog offloading. Sensors 18(10), 3291–3307 (2018)

    Article  Google Scholar 

  7. Huang, Y., Clerckx, B., Bayguzina, E.: Waveform design for wireless power transfer with limited feedback. IEEE Trans. Wireless Commun. 17(1), 415–429 (2018)

    Article  Google Scholar 

  8. Zheng, H., Xiong, K., Fan, P., Zhong, Z.: Wireless powered communication networks assisted by multiple fog servers. In Proceeding IEEE ICC Workshops, Shanghai, China, pp. 1–6 (2019)

    Google Scholar 

  9. Wang, F.: Computation rate maximization for wireless powered mobile edge computing. In: Proceeding APCC, Perth, Australia, pp. 1–6 (2017)

    Google Scholar 

  10. Zeng, M., Du, R., Fodor, V., Fischione, C.: Computation rate maximization for wireless powered mobile edge computing with NOMA. In: Proceeding of IEEE WoWMoM, Washington DC, USA, pp. 1–9 (2019)

    Google Scholar 

  11. Bi, S., Zhang, Y.J.: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans. Wirel. Commun. 17(6), 4177–4190 (2018)

    Article  Google Scholar 

  12. Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018)

    Article  Google Scholar 

  13. Liu, J., Xiong, K., Fan, P., Zhong, Z., Letaief, K.B.: Optimal design of SWIPT-aware fog computing networks. In: Proceedings IEEE INFOCOM Workshops, Paris, France, pp. 13–19 (2019)

    Google Scholar 

  14. Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., Letaief, K.B.: Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model. IEEE J. Sel. Areas Commun. 37(1), 216–232 (2019)

    Article  Google Scholar 

  15. Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

    Google Scholar 

  16. Ju, H., Zhang, R.: Throughput maximization in wireless powered communication networks. IEEE Trans. Wirel. Commun. 13(1), 418–428 (2014)

    Article  Google Scholar 

  17. Liu, L., Zhang, R., Chua, K.C.: Multi-antenna wireless powered communication with energy beamforming. IEEE Trans. Commun. 62(12), 4349–4361 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H. et al. (2020). Power Minimization in Wireless Powered Fog Computing Networks with Binary Offloading. In: Hao, Z., Dang, X., Chen, H., Li, F. (eds) Wireless Sensor Networks. CWSN 2020. Communications in Computer and Information Science, vol 1321. Springer, Singapore. https://doi.org/10.1007/978-981-33-4214-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4214-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4213-2

  • Online ISBN: 978-981-33-4214-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics