Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1306))

Included in the following conference series:

  • 1275 Accesses

Abstract

In this paper, we present an efficient method for reconstructing color images based on the convex optimization. Current convex optimization methods are all applied to one channel images, so as the number of channels increases, the number of convex optimization problems increase. We present a solution to reconstruct color images represented by three color channels RGB by only one convex optimization problem and use a high-performance algorithm BFGS for solving the problem. We also perform several experiments to compare our method with others on reality datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/lbasek/image-denoising-benchmark.

  2. 2.

    https://github.com/csjunxu/MCWNNM-ICCV2017.

  3. 3.

    https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset/tree/master.

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. In: IEEE Transactions on Image Processing, vol. 20, no. 3 (2011)

    Google Scholar 

  2. Anaya, J., Barbu, A.: RENOIR - a dataset for real low-light image noise reduction. J. Visual Commun. Image Rep. 51(2), 144–154 (2018)

    Article  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two variables. Trans. Am. Math. Soc. 35(1933), 824–854 (1933)

    Article  MathSciNet  Google Scholar 

  5. Curry, H.B.: The method of steepest descent for non-linear minimization problems. Quart. Appl. Math. 2, 258–261 (1944)

    Article  MathSciNet  Google Scholar 

  6. Sundararajan, D.: Edge detection. Digital Image Processing, pp. 257–280. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6113-4_9

    Chapter  MATH  Google Scholar 

  7. Huang, T.S., Yang, G.J., Tang, G.Y.: In: IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 27, no. 1 (1979)

    Google Scholar 

  8. Hamza, A., Luque, P., Martinez, J., Roman, R.: Removing noise and preserving details with relaxed median filters. J. Math. Image Vision 11(2), 161–177 (1999). https://doi.org/10.1023/A:1008395514426

    Article  MathSciNet  Google Scholar 

  9. Hardie, R.C., Barner, K.E.: Rank conditioned rank selection filters for signal restoration. IEEE Trans. Image Process. 3, 192–206 (1994)

    Article  Google Scholar 

  10. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, New Jersey (1989)

    MATH  Google Scholar 

  11. Jain, P., Tyagi, V.: An adaptive edge-preserving image denoising technique using tetrolet transforms. Vis.Comput. 31(5), 657–674 (2014). https://doi.org/10.1007/s00371-014-0993-7

    Article  Google Scholar 

  12. Kim, D., Park, S.W., Kim, D.H., Yoo, M.S., Lee, Y.J.: Feasibility of sinogram reconstruction based on inpainting method with decomposed sinusoid-like curve (S-curve) using total variation (TV) noise reduction algorithm in computed tomography (CT) imaging system: a simulation study. In: Optik, vol. 161, pp.270-277 (2018)

    Google Scholar 

  13. Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris, F.C.: Survey of image denoising techniques. In: GSPX (2004)

    Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn., pp. 136–143. Spinger, New York (2006)

    MATH  Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  16. Vandenberghe, L.: Quasi Newton Methods. http://www.seas.ucla.edu/~vandenbe/236C/lectures/qnewton.pdf. Accessed 1 Sep 2020

  17. Wali, S., Zhang, H., Chang, H., Wu, C.: A new adaptive boosting total generalized variation (TGV) technique for image denoising and inpainting. J. Vis. Commun. Image Represent. 59, 39–51 (2019)

    Article  Google Scholar 

  18. Wright, M.H.: The interior-point revolution in optimization: History, recent developments, and lasting consequences. In: Bulletin of the American Mathematical Society (2004)

    Google Scholar 

  19. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising. In: International Conference on Computer Vision (ICCV), pp. 1105–1113. Venice, Italy (2017)

    Google Scholar 

  20. Xu, J., Li, H., Liang, Z., Zhang, D., Zhang, L.: Real-world noisy image denoising: a new benchmark. In: IEEE Conference Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  21. Xue, H., Zhang, S., Cai, D.: Depth image inpainting: improving low rank matrix completion with low gradient regularization. IEEE Trans. Image Process. 26(9), 4311–4320 (2017)

    Article  MathSciNet  Google Scholar 

  22. Yang, J., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filters under structural constraints. IEEE Trans. Signal Process. 43, 591–604 (1995)

    Article  Google Scholar 

  23. Encyclopedia of Mathematics. https://encyclopediaofmath.org/index.php?title=Newton_method. Accessed 1 Sep 2020

  24. Lagrange Multiplier - Wolfram MathWorld. https://mathworld.wolfram.com/LagrangeMultiplier.html. Accessed 1 Sep 2020

  25. Image denoising by FFT - Scipy lecture. http://scipy-lectures.org/intro/scipy/auto_examples/solutions/plot_fft_image_denoise.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Hong Trang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anh, N.T.H., Toan, N.D.V., Trang, L.H. (2020). A Convex Optimization Based Method for Color Image Reconstruction. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2020. Communications in Computer and Information Science, vol 1306. Springer, Singapore. https://doi.org/10.1007/978-981-33-4370-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4370-2_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4369-6

  • Online ISBN: 978-981-33-4370-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics