Abstract
Data nowadays is an extremely valuable resource. However, they are created and stored in different places with various formats and types. As a result, it is not easy and efficient for data analysis and data mining which can make profits for every aspect of social applications. In order to overcome this problem, a data conversion is a crucial step that we have to build for linking and merging different data resources to a unified data store. In this paper, based on the intermediate data conversion model, we propose an elastic data conversion framework for data integration system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lai, C.S., et al.: A review of technical standards for smart cities. Clean Technol. 2(3), 290–310 (2020)
Dang, T.K., Nguyen, Q.P., Nguyen, V.S.: Evaluating session-based recommendation approaches on datasets from different domains. In: Dang, T.K., Küng, J., Takizawa, M., Bui, S.H. (eds.) FDSE 2019. LNCS, vol. 11814, pp. 577–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35653-8_37
Dong X.L., Srivastava, D.: Big Data Integration, p. 198. Morgan & Claypool Publishers (2015)
McLaren, D., Agyeman, J.: Sharing Cities: A Case for Truly Smart and Sustainable Cities. MIT Press, Cambridge (2015)
Federal Highway Administration, U.S. Department of Transportation. Data Integration Primer (2010). https://www.fhwa.dot.gov/asset/dataintegration/if10019/dip00.cfm
Lee, H., Jung, H., Shin, M., Kwon, O.: Developing a semi-automatic data conversion tool for Korean ecological data standardization. J. Ecol. Environ. 41(11), (2017)
Information Builders: Real World Strategies for Big Data - Tackling The Most Common Challenges With Big Data Integration - A white paper (2016)
Ermilov, I., Stadler, C., Martin, M., Auer, S.: CSV2RDF: User-driven CSV to RDF mass conversion framework. In: Proceedings of the 9th International Conference on Semantic Systems (2013)
Knoblock, C.A., Szekely, P.: Exploiting semantics for big data integration. AI Mag. 36(1), 25–38 (2015)
Paiva, L., et al.: Interoperability: A data conversion framework to support energy simulation. Proceedings 1(7), 695 (2017). ISSN: 2504–3900
Obitko, M., Jirkovský, V.: Big data semantics in industry 4.0. In: MaÅ™Ãk, V., Schirrmann, A., Trentesaux, D., Vrba, P. (eds.) HoloMAS 2015. LNCS (LNAI), vol. 9266, pp. 217–229. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22867-9_19
Microsoft: SQL Server Integration Services (2017). https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
Vathoopan, M., Brandenbourger, B., George, A., Zoitl, A.: Towards an integrated plant engineering process using a data conversion tool for AutomationML. In: IEEE International Conference on Industrial Technology, pp. 1205–1210 (2017)
Nguyen, L.H., Le, H.T., Dang, T.K.: A comparative study of the some methods used in constructing coresets for clustering large datasets. SN Comput. Sci. 1(4), 215 (2020). Online ISSN: 2661–8907
Barnaghi, P., Bermudez-Edo, M., Tonjes, R.: Challenges for quality of data in smart cities. ACM J. Data Inf. Qual. 6 (2015)
Rocha, L., et al.: A framework for migrating relational datasets to NoSQL1. Procedia Comput. Sci. 51, 2593–2602 (2015)
Talend: Talend Data Integration (2017). https://www.talend.com/
Acknowledgements
This work is supported by a project with the Department of Science and Technology, Ho Chi Minh City, Vietnam (contract with HCMUT No. 42/2019/HD-QPTKHCN, dated 11/7/2019).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Dang, T.K., Ta, M.H., Hoang Nguyen, L. (2020). An Elastic Data Conversion Framework for Data Integration System. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2020. Communications in Computer and Information Science, vol 1306. Springer, Singapore. https://doi.org/10.1007/978-981-33-4370-2_3
Download citation
DOI: https://doi.org/10.1007/978-981-33-4370-2_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-33-4369-6
Online ISBN: 978-981-33-4370-2
eBook Packages: Computer ScienceComputer Science (R0)