Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1306))

Included in the following conference series:

  • 1338 Accesses

Abstract

Data nowadays is an extremely valuable resource. However, they are created and stored in different places with various formats and types. As a result, it is not easy and efficient for data analysis and data mining which can make profits for every aspect of social applications. In order to overcome this problem, a data conversion is a crucial step that we have to build for linking and merging different data resources to a unified data store. In this paper, based on the intermediate data conversion model, we propose an elastic data conversion framework for data integration system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lai, C.S., et al.: A review of technical standards for smart cities. Clean Technol. 2(3), 290–310 (2020)

    Google Scholar 

  2. Dang, T.K., Nguyen, Q.P., Nguyen, V.S.: Evaluating session-based recommendation approaches on datasets from different domains. In: Dang, T.K., Küng, J., Takizawa, M., Bui, S.H. (eds.) FDSE 2019. LNCS, vol. 11814, pp. 577–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35653-8_37

    Chapter  Google Scholar 

  3. Dong X.L., Srivastava, D.: Big Data Integration, p. 198. Morgan & Claypool Publishers (2015)

    Google Scholar 

  4. McLaren, D., Agyeman, J.: Sharing Cities: A Case for Truly Smart and Sustainable Cities. MIT Press, Cambridge (2015)

    Google Scholar 

  5. Federal Highway Administration, U.S. Department of Transportation. Data Integration Primer (2010). https://www.fhwa.dot.gov/asset/dataintegration/if10019/dip00.cfm

  6. Lee, H., Jung, H., Shin, M., Kwon, O.: Developing a semi-automatic data conversion tool for Korean ecological data standardization. J. Ecol. Environ. 41(11), (2017)

    Google Scholar 

  7. Information Builders: Real World Strategies for Big Data - Tackling The Most Common Challenges With Big Data Integration - A white paper (2016)

    Google Scholar 

  8. Ermilov, I., Stadler, C., Martin, M., Auer, S.: CSV2RDF: User-driven CSV to RDF mass conversion framework. In: Proceedings of the 9th International Conference on Semantic Systems (2013)

    Google Scholar 

  9. Knoblock, C.A., Szekely, P.: Exploiting semantics for big data integration. AI Mag. 36(1), 25–38 (2015)

    Article  Google Scholar 

  10. Paiva, L., et al.: Interoperability: A data conversion framework to support energy simulation. Proceedings 1(7), 695 (2017). ISSN: 2504–3900

    Google Scholar 

  11. Obitko, M., Jirkovský, V.: Big data semantics in industry 4.0. In: Mařík, V., Schirrmann, A., Trentesaux, D., Vrba, P. (eds.) HoloMAS 2015. LNCS (LNAI), vol. 9266, pp. 217–229. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22867-9_19

    Chapter  Google Scholar 

  12. Microsoft: SQL Server Integration Services (2017). https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services

  13. Vathoopan, M., Brandenbourger, B., George, A., Zoitl, A.: Towards an integrated plant engineering process using a data conversion tool for AutomationML. In: IEEE International Conference on Industrial Technology, pp. 1205–1210 (2017)

    Google Scholar 

  14. Nguyen, L.H., Le, H.T., Dang, T.K.: A comparative study of the some methods used in constructing coresets for clustering large datasets. SN Comput. Sci. 1(4), 215 (2020). Online ISSN: 2661–8907

    Google Scholar 

  15. Barnaghi, P., Bermudez-Edo, M., Tonjes, R.: Challenges for quality of data in smart cities. ACM J. Data Inf. Qual. 6 (2015)

    Google Scholar 

  16. Rocha, L., et al.: A framework for migrating relational datasets to NoSQL1. Procedia Comput. Sci. 51, 2593–2602 (2015)

    Google Scholar 

  17. Talend: Talend Data Integration (2017). https://www.talend.com/

Download references

Acknowledgements

This work is supported by a project with the Department of Science and Technology, Ho Chi Minh City, Vietnam (contract with HCMUT No. 42/2019/HD-QPTKHCN, dated 11/7/2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tran Khanh Dang or Le Hoang Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, T.K., Ta, M.H., Hoang Nguyen, L. (2020). An Elastic Data Conversion Framework for Data Integration System. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2020. Communications in Computer and Information Science, vol 1306. Springer, Singapore. https://doi.org/10.1007/978-981-33-4370-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4370-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4369-6

  • Online ISBN: 978-981-33-4370-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics