Skip to main content

Genome-Wide Association Analysis for Oat Genetics Using Support Vector Machines

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1306))

Included in the following conference series:

  • 1217 Accesses

Abstract

An approach, namely genome-wide association study (GWAS), is usually deployed in genetics research to associate specific genetic variations with particular diseases. This method can be scanning the genomes from a vast of sources and looking for genetic markers that can be used to discriminate phenotypes. In recent years, advancements in computational resources have proposed and published to provide robust tools supporting studies on GWAS. This study aims to propose a method based on machine learning on Oat sequences to provide insights into the genetic architectures to discriminate phenotypes comparing to a statistical analysis on Genome-Wide Association Analysis provided in a R package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geschwinde, E., Schoening, H.-J.: PHP and PostgreSQL Advanced Web Programming. Sams Publishing, Indianapolis (2002)

    Google Scholar 

  2. Valentini, L.: P.mapper-based WebGIS, Politecnico di Milano - Polo Regionale di Como, Italia (2011)

    Google Scholar 

  3. Isidro-Sánchez, J., Akdemir, D., Montilla-Bascón, G.: Genome-wide association analysis using R. In: Gasparis, S. (ed.) Oat. MMB, vol. 1536, pp. 189–207. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-6682-0_14

    Chapter  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Roselli, C., Rienstra, M., Ellinor, P.T.: GWAS, genome sequencing, polygenic risk, and beyond. Genetics of atrial fibrillation in 2020 (2020). https://doi.org/10.1161/CIRCRESAHA.120.316575

  6. Beck, T., Shorter, T., Brookes, A.J.: GWAS central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Res. 48(D1), D933–D940 (2020). https://doi.org/10.1093/nar/gkz895

  7. Ta, K., Phung, L., Do, S.: Genome wide association study (GWAS): potential applications and challenges for rice (Oryza sativa L.) breeding programme. In: Vietnam National Conference on Plant Science (2016)

    Google Scholar 

  8. Hen, H., Gelaye, B., Huang, H., et al.: Polygenic prediction and GWAS of depression, PTSD, and suicidal ideation/self-harm in a Peruvian cohort. Neuropsychopharmacology 45, 1595–1602 (2020). https://doi.org/10.1038/s41386-020-0603-5

    Article  Google Scholar 

  9. Matoba, N., Akiyama, M., Ishigaki, K., et al.: GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat. Hum. Behav. 4, 308–316 (2020). https://doi.org/10.1038/s41562-019-0805-1

    Article  Google Scholar 

  10. Li, Z., et al.: Integrating mouse and human genetic data to move beyond GWAS and identify causal genes in cholesterol metabolism. Cell Metab. 31(4), 741–754.e5 (2020). https://doi.org/10.1016/j.cmet.2020.02.015

  11. Tian, D., et al.: GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. 48(D1), D927–D932 (2020). https://doi.org/10.1093/nar/gkz828

    Article  Google Scholar 

  12. Sakai, K., et al.: Identification of a novel uterine leiomyoma GWAS locus in a Japanese population. Sci. Rep. 10, 1–18 (2020). Article number: 1197

    Article  Google Scholar 

  13. Nicholls, H.L., et al.: Reaching the end-game for GWAS: machine learning approaches for the prioritization of complex disease loci. Front. Genet. 11, 350 (2020). https://doi.org/10.3389/fgene.2020.00350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiep Xuan Huynh or Hai Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, H.X., Tran, T.B., Pham, Q.N., Nguyen, H.T. (2020). Genome-Wide Association Analysis for Oat Genetics Using Support Vector Machines. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2020. Communications in Computer and Information Science, vol 1306. Springer, Singapore. https://doi.org/10.1007/978-981-33-4370-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4370-2_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4369-6

  • Online ISBN: 978-981-33-4370-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics