
Essential Spectrum-based Fault Localization

Xiaoyuan Xie • Baowen Xu

Essential Spectrum-based
Fault Localization

Xiaoyuan Xie
School of Computer Science
Wuhan University
Wuhan, Hubei, China

Baowen Xu
Department of Computer Science
and Technology
Nanjing University
Nanjing, Jiangsu, China

ISBN 978-981-33-6178-2 ISBN 978-981-33-6179-9 (eBook)
https://doi.org/10.1007/978-981-33-6179-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-33-6179-9

Foreword

I never forget the day when I first realized the importance of software quality. It was
in 1979 when I was doing my undergraduate study and introduced to programming
language. One day, I learned the story about Mariner 1, the first spacecraft in the
American Mariner program, which was launched on July 22, 1962, but had to be
destroyed after veering off course due to equipment failure and an error in coded
computer instructions. The post-flight review found that a missing hyphen in coded
computer instructions allowed transmission of incorrect guidance signals. Even
though this mission was later achieved by Mariner 2, the loss of Mariner 1 was
as high as 18.5 million US dollars. Significantly, this epic software bug impressed
me and influenced my following academic career.

After I started my master’s degree program supervised by Prof. Zhenyu Wang, I
gained a deeper understanding of programming languages (such as Ada, AED,
ALGOL60, ALGOL68, ALGOL W, APL, BASIC, BCPL, BLISS, C, CLU,
COBOL, Concurrent Pascal, CORAL66, Edison, Eiffel, Euclid, Euler, FORTH,
FORTRAN IV, FORTRAN 77, GPSS, JOVIAL, LIS, LISP, Modula, Modula-
2, Modula-3, NPL, Oberon, Pascal, PL/I, PL/M, PLZ/SYS, PROLOG, SETL,
SIMULA, SmallTalk, SNOBOL, SPL/I). In that age, though programs were not in
large scale or with complex structures, testing and debugging were actually very
challenging due to the lack of supporting mechanisms and facilities. Initiated by my
study on programming language principles, design, and implementation, a belief
that I should also do studies on software quality assurance becomes stronger and
stronger.

I was one of the first researchers who systematically studied software quality in
China. In 1986, I published the first paper in China, enumerating various issues in
C programming languages that can introduce risks in software. I also compared
several popular programming languages in that age, such as Ada and Pascal,
discussing principles and metrics for good programming languages. Right around
the same time, I worked on program analysis and slicing. I proposed a method for
backward dependence analysis. Under my supervision, my students also developed
a series of methods for static and dynamic program analysis, dependence analysis
in concurrent programs, monadic slicing for programs with pointers, etc.

v

vi Foreword

Since 1995, we have started to realize the importance of software measurements
in producing high-quality software systems. We proposed approaches to measuring
class cohesion based on dependence analysis, package cohesion based on client
usage, and methods to further improve software architecture design. Around 2000,
we initiated our first project on software testing. After that, my research group
kept putting many efforts in this area, and have harvested abundant achievements
over the past two decades, which cover combinatorial testing, regression testing,
evolutionary testing, metamorphic testing, web testing, and test case prioritization
and reduction. We also cared about software reliability and security. Based on the
accumulations in testing and analysis, our group was able to develop a series of
theories and methodologies in software fault localization and defect prediction,
which have exerted profound influences in these areas. Recently, we expanded our
directions to testing and debugging for artificial intelligent systems, crowdsourcing
software engineering, empirical software engineering, and knowledge graph.

Over the past 30 years, our group has obtained many important research
results, which are highly praised by international peers and exert great impact in
relevant fields. We have undertaken over 70 research projects from the National
Natural Science Foundation of China, the Ministry of Education, the Ministry of
Science and Technology, Jiangsu Province, institutions, and famous enterprises.
The group has published more than 500 papers, including top venues such as
ACM Transactions on Software Engineering and Methodology, IEEE Transactions
on Software Engineering, the International Conference on Software Engineering,
The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, and the International Joint Conference
on Artificial Intelligence. We have also built close connections and collaboration
with many prestigious universities and institutes, including Purdue University,
Nanyang Technological University, University of California Irvine, University
College London, and Columbia University.

We have developed multiple systems including CRL/Ada language and its
generation system, Ada program analysis and understanding system (APAUS),
software maintenance and support system for Ada reverse engineering (ARMS),
embedded software testing support system (ETS), software quality assurance system
(SQAS), and testing platform for large and complex systems (Testeres). Through
participation in various projects, we also built up large-scale benchmarks of real-
life data. From these data, we conducted empirical studies and have provided useful
and convincing insights.

Such a long period of research gives us good accumulation in both theory and
practice. And hence we are planning a series of books on relevant areas of program
analysis, testing, and evolution. We hope they will appear in the near future.

Nanjing University, China Baowen Xu

Preface

Program debugging has always been a difficult and time-consuming task in software
development. Back in the 1970s, when researchers proposed the concept of program
slicing, automatic program fault localization became an ambition for efficiently
debugging the program. Since then, various trials were performed to get closer to
this goal, among which spectrum-based fault localization (SBFL) is one of the most
widely studied families of techniques.

SBFL was first proposed around 2000. Different from traditional slicing-based
methods, SBFL became popular because of its lightweight and practicability.
Since 2000, this area has seen thousands of techniques derived from various
perspectives. As a consequence, it becomes very important and urgent to compare
the actual performance among different SBFL techniques. In fact, before 2013,
many empirical studies were conducted to investigate this question. However,
they were strongly dependent on the experimental setup, and hence can hardly
be considered as sufficiently comprehensive due to the huge number of possible
combinations of various factors in SBFL. In other words, these empirical studies
did not reveal the essence of SBFL performance.

Therefore, we propose to draft this book, whose orientation is not to introduce
various SBFL techniques, or to compare their empirical performance. Instead, this
book aims to provide a deep understanding on the essence of this area, talking
about its essential theories. Specifically, this book introduces a series of set-based
theoretical frameworks, which reveal the intrinsic performance hierarchy among
different SBFL techniques. In addition, this book also discusses two emerging
challenges of “oracle problem” and “multiple faults” and introduces promising
solutions.

The target audience of this book are mainly graduate students and researchers
who work in the areas of software analysis, testing, debugging, and repairing, and
are seeking deep comprehension of SBFL.

Wuhan University, China Xiaoyuan Xie
Nanjing University, China Baowen Xu

vii

Acknowledgments

Our research is partially supported by the National Natural Science Foundation of
China under Grant numbers 61832009, 61972289, 61772263, 61572375, 61472178,
91418202, 61170071.

We want to express our gratitude to our long-term collaborators (alphabetic order
on the surnames):

• Prof. Tsong Yueh Chen (Swinburne University, Australia)
• Prof. Yang Liu (Nanyang Technological University, Singapore)
• Prof. T. H. Tse (Hong Kong University)
• Prof. W. Eric Wong (University of Texas at Dallas, USA)
• Prof. Shin Yoo (Korea Advanced Institute of Science and Technology, South

Korea)
• Prof. Xiangyu Zhang (Purdue University, USA)

We sincerely thank the graduate student Yi Song in our group for his contribu-
tions in editing. We also sincerely appreciate the constructive suggestions from the
reviewers, as well as the efforts of Springer Editor Jane Li and Project Coordinator
Priya Shankar.

ix

Contents

1 Introduction . 1
1.1 Assurance of Software Quality . 1
1.2 Automatic Fault Localization.. 2
1.3 Basis in Spectrum-Based Fault Localization . 3
1.4 Some Research Directions in SBFL. 5

1.4.1 Risk Evaluation Formulas . 5
1.4.2 Parallel Debugging . 7
1.4.3 Combining Deep Learning with SBFL . 8

1.5 Structure of This Book .. 9
References . 10

2 A Theoretical Framework for Spectrum-Based Fault Localization 15
2.1 Comparison Among Risk Formulas . 15
2.2 A Set-Based Framework .. 16
2.3 Set Division for Risk Evaluation Formulas . 19
References . 27

3 Theoretical Comparison Among Risk Evaluation Formulas 29
3.1 Preliminary . 29
3.2 The Performance Hierarchy . 30

3.2.1 Equivalent Cases . 30
3.2.2 Non-equivalent Cases. 33

References . 38

4 On the Maximality of Spectrum-Based Fault Localization 39
4.1 Definitions . 39
4.2 Theoretical Maximality in R . 41

4.2.1 Preliminary Propositions . 41
4.2.2 A Necessary and Sufficient Condition for Maximal

Formula . 44
4.2.3 Non-existence of the Greatest Formula .. 46

Reference . 46

xi

xii Contents

5 A Generalized Theoretical Framework for Hybrid
Spectrum-Based Fault Localization . 47
5.1 A Hybrid Spectrum-Based Fault Localization: SENDYS 47
5.2 Addressing the NOR Problem in SENDYS . 49

5.2.1 Issue About Negative Values . 49
5.2.2 Issue About Zero Values. 49
5.2.3 Addressing the NOR Problem in the Original SENDYS 50

5.3 Theoretical Analysis in Single-Fault Scenario. 51
5.3.1 Preliminary: Generalized Set Theory-Based Framework 51
5.3.2 Properties of M1 in the Single-Fault Scenario.. 52
5.3.3 Enhanced M1 in the Single-Fault Scenario 53
5.3.4 Comparison Among the Mi Algorithms

with Execution Slice . 54
5.3.5 Comparison Among the Mi Algorithms

with Dynamic Slice . 62
References . 66

6 Practicality of the Theoretical Frameworks . 67
6.1 100% Coverage and Omission Fault . 67
6.2 Tie-Breaking Scheme . 69
6.3 Single-Fault Scenario . 72
References . 73

7 Tackling the Oracle Problem in Spectrum-Based Fault
Localization . 75
7.1 The Oracle Problem in SBFL. 75
7.2 A Solution to General Oracle Problem: Metamorphic Testing 76
7.3 Metamorphic Slice: A Property-Based Program Slice 77
7.4 SBFL with e_mslice . 78
7.5 Illustrative Examples. 79
References . 82

8 Spectrum-Based Fault Localization for Multiple Faults 83
8.1 Challenge in SBFL: Dealing with Multiple Faults . 83
8.2 Sequential Debugging . 84
8.3 Parallel Debugging .. 85

8.3.1 Approach: P2. 85
8.3.2 Approach: MSeer . 87

References . 90

9 Conclusion . 93
References . 94

A SR
B
, SR

F
, and SR

A
for All Formulas . 95

B Theoretical Comparison Among All Formulas . 153

	Foreword
	Preface
	Acknowledgments
	Contents

