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Foreword

I never forget the day when I first realized the importance of software quality. It was
in 1979 when I was doing my undergraduate study and introduced to programming
language. One day, I learned the story about Mariner 1, the first spacecraft in the
American Mariner program, which was launched on July 22, 1962, but had to be
destroyed after veering off course due to equipment failure and an error in coded
computer instructions. The post-flight review found that a missing hyphen in coded
computer instructions allowed transmission of incorrect guidance signals. Even
though this mission was later achieved by Mariner 2, the loss of Mariner 1 was
as high as 18.5 million US dollars. Significantly, this epic software bug impressed
me and influenced my following academic career.

After I started my master’s degree program supervised by Prof. Zhenyu Wang, I
gained a deeper understanding of programming languages (such as Ada, AED,
ALGOL60, ALGOL68, ALGOL W, APL, BASIC, BCPL, BLISS, C, CLU,
COBOL, Concurrent Pascal, CORAL66, Edison, Eiffel, Euclid, Euler, FORTH,
FORTRAN IV, FORTRAN 77, GPSS, JOVIAL, LIS, LISP, Modula, Modula-
2, Modula-3, NPL, Oberon, Pascal, PL/I, PL/M, PLZ/SYS, PROLOG, SETL,
SIMULA, SmallTalk, SNOBOL, SPL/I). In that age, though programs were not in
large scale or with complex structures, testing and debugging were actually very
challenging due to the lack of supporting mechanisms and facilities. Initiated by my
study on programming language principles, design, and implementation, a belief
that I should also do studies on software quality assurance becomes stronger and
stronger.

I was one of the first researchers who systematically studied software quality in
China. In 1986, I published the first paper in China, enumerating various issues in
C programming languages that can introduce risks in software. I also compared
several popular programming languages in that age, such as Ada and Pascal,
discussing principles and metrics for good programming languages. Right around
the same time, I worked on program analysis and slicing. I proposed a method for
backward dependence analysis. Under my supervision, my students also developed
a series of methods for static and dynamic program analysis, dependence analysis
in concurrent programs, monadic slicing for programs with pointers, etc.
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vi Foreword

Since 1995, we have started to realize the importance of software measurements
in producing high-quality software systems. We proposed approaches to measuring
class cohesion based on dependence analysis, package cohesion based on client
usage, and methods to further improve software architecture design. Around 2000,
we initiated our first project on software testing. After that, my research group
kept putting many efforts in this area, and have harvested abundant achievements
over the past two decades, which cover combinatorial testing, regression testing,
evolutionary testing, metamorphic testing, web testing, and test case prioritization
and reduction. We also cared about software reliability and security. Based on the
accumulations in testing and analysis, our group was able to develop a series of
theories and methodologies in software fault localization and defect prediction,
which have exerted profound influences in these areas. Recently, we expanded our
directions to testing and debugging for artificial intelligent systems, crowdsourcing
software engineering, empirical software engineering, and knowledge graph.

Over the past 30 years, our group has obtained many important research
results, which are highly praised by international peers and exert great impact in
relevant fields. We have undertaken over 70 research projects from the National
Natural Science Foundation of China, the Ministry of Education, the Ministry of
Science and Technology, Jiangsu Province, institutions, and famous enterprises.
The group has published more than 500 papers, including top venues such as
ACM Transactions on Software Engineering and Methodology, IEEE Transactions
on Software Engineering, the International Conference on Software Engineering,
The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, and the International Joint Conference
on Artificial Intelligence. We have also built close connections and collaboration
with many prestigious universities and institutes, including Purdue University,
Nanyang Technological University, University of California Irvine, University
College London, and Columbia University.

We have developed multiple systems including CRL/Ada language and its
generation system, Ada program analysis and understanding system (APAUS),
software maintenance and support system for Ada reverse engineering (ARMS),
embedded software testing support system (ETS), software quality assurance system
(SQAS), and testing platform for large and complex systems (Testeres). Through
participation in various projects, we also built up large-scale benchmarks of real-
life data. From these data, we conducted empirical studies and have provided useful
and convincing insights.

Such a long period of research gives us good accumulation in both theory and
practice. And hence we are planning a series of books on relevant areas of program
analysis, testing, and evolution. We hope they will appear in the near future.

Nanjing University, China Baowen Xu



Preface

Program debugging has always been a difficult and time-consuming task in software
development. Back in the 1970s, when researchers proposed the concept of program
slicing, automatic program fault localization became an ambition for efficiently
debugging the program. Since then, various trials were performed to get closer to
this goal, among which spectrum-based fault localization (SBFL) is one of the most
widely studied families of techniques.

SBFL was first proposed around 2000. Different from traditional slicing-based
methods, SBFL became popular because of its lightweight and practicability.
Since 2000, this area has seen thousands of techniques derived from various
perspectives. As a consequence, it becomes very important and urgent to compare
the actual performance among different SBFL techniques. In fact, before 2013,
many empirical studies were conducted to investigate this question. However,
they were strongly dependent on the experimental setup, and hence can hardly
be considered as sufficiently comprehensive due to the huge number of possible
combinations of various factors in SBFL. In other words, these empirical studies
did not reveal the essence of SBFL performance.

Therefore, we propose to draft this book, whose orientation is not to introduce
various SBFL techniques, or to compare their empirical performance. Instead, this
book aims to provide a deep understanding on the essence of this area, talking
about its essential theories. Specifically, this book introduces a series of set-based
theoretical frameworks, which reveal the intrinsic performance hierarchy among
different SBFL techniques. In addition, this book also discusses two emerging
challenges of “oracle problem” and “multiple faults” and introduces promising
solutions.

The target audience of this book are mainly graduate students and researchers
who work in the areas of software analysis, testing, debugging, and repairing, and
are seeking deep comprehension of SBFL.

Wuhan University, China Xiaoyuan Xie
Nanjing University, China Baowen Xu
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