Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 285))

Abstract

Dzyaloshiniskii–Moriya (DM) interaction is used to generate entangled network from partially entangled states in the presence of the spin–orbit coupling. The effect of the spin coupling on the entanglement between any two nodes of the network is investigated. It is shown that the entanglement decays as the coupling increases. For larger values of the spin coupling, the entanglement oscillates between upper and lower bounds. For initially entangled channels, the upper bound does not exceed its initial value, whereas for the channels generated via indirect interaction, the entanglement reaches its maximum value.

Please note that the LNCS Editorial assumes that all authors have used the western naming convention, with given names preceding surnames. This determines the structure of the names in the running heads and the author index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chuang, Isaac L., Nielsen, Michael A.: Quantum computation and quantum information. In Cambridge University Press, (2000)

    Google Scholar 

  2. Zhang, Jian-Song., Chen, Ai-Xi.: Review on quantum discord of bipartite and multipartite systems. Quant. Phys. Lett. 1, 69-77 (2012)

    Google Scholar 

  3. Ezhov, A.A.: Pattern Recognition with Quantum Neural Networks. Lecture Notes in Computer Science. 2013, 60–71 (2001)

    Google Scholar 

  4. Caraiman, S. and Manta, V.: Image processing using quantum computing. System Theory, Control and Computing (ICSTCC), IEEE Press. 1–6 (2012)

    Google Scholar 

  5. Seth Lloyd, Masoud Mohseni, Patrick Rebentrost.: Quantum algorithms for supervised and unsupervised machine learning. http://arxiv.org/abs/1307.0411 (2013)

  6. Ahmed Younes, Database Manipulation Operations on Quantum Systems, Quantum. Information. Review. 1, 9-17 (2013) (Jan. 2013), PP:9-17

    Google Scholar 

  7. Elliott, Y.C.: Building the quantum network. New J. Phys. 4(3), 46-53 (2002)

    Google Scholar 

  8. Mink, A., Hershman, B.J., Nakassis, A., Tang, X., Lu, R., Su, D.H., Clark, C.W., Williams, C.J., Hagley, E.W., Wen, J., Bienfang, J., Gross, A.J.: Quantum key distribution with 1.25 gbps clock synchronization. Optics Express. 12(9), 20112016 (2004)

    Google Scholar 

  9. Buntschu F.: Long-term performance of the swissquantum quantum key distribution network in a field environment. :New J. Phys, 13:123001, 2011.

    Google Scholar 

  10. Ishizuka H., et al.: Field test of quantum key distribution in the tokyo qkd network. Optics Express. 19(11), 1038710409, (2011)

    Google Scholar 

  11. Mtwallay, M.: Entangled network and quantum communications. Phys. Lett. A. 375(3), 426853 (2011)

    Google Scholar 

  12. Abdel-Aty, Abdel-Haleem., Cheong, LeeYen., Zakaria, Nordin., Metwally, Nasser,. Quantum network via partial entangled state. In: International Conference in Quantum Optics and Quantum Information (icQoQi), IOP Press (2013).

    Google Scholar 

  13. Abdel-Haleem Abdel-Aty, LeeYen Cheong, Nordin Zakaria, and Nasser Metwally. Entanglement and teleportation via partial entangled-state quantum network. (Submitted) Quant. Inf. Process., 2013.

    Google Scholar 

  14. Darwish, M., Obada, A.-S.F,. El-Barakaty, A.: Purity loss for a cooper pair box interacting dispersively with a nonclassical field under phase damping. Appl. Math. Inf. Sci, 5, 122 (2011)

    Google Scholar 

  15. Hessian, H.A.: Entropy Growth and Formation of Stationary Entanglement due to Intrinsic Noise in the Two-Mode JC Model. Quant. Phys. Lett. 2, 1-9 (2013)

    Google Scholar 

  16. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett, 4, 228 (1960)

    Google Scholar 

  17. Friesen, M., Chutia, S., Joynt, R.: Detection and measurement of the dzyaloshinskii-moriya interaction in double quantum dot systems. Phys. Rev. 73, 241304 (2006)

    Google Scholar 

  18. Zhang, Guo-Feng.: Thermal entanglement and teleportation in a twoqubit heisenberg chain with dzyaloshinski-moriya anisotropic antisymmetric interaction. Phys. Rev. A. 75, 034304 (2007)

    Google Scholar 

  19. Sha–Sha Li, Ting-Qi Ren, Xiang-Mu Kong, and Kai Liu.: Thermal entanglement in the heisenberg”XXZ” model with dzyaloshinskiimoriya interaction. Physica A: Statistical Mechanics and its Applications, 391(12), 35–41 (2012)

    Google Scholar 

  20. Yeo, Y.: Teleportation via thermally entangled states of a two-qubit heisenberg XX chain. Phys. Rev. A, 66, 062312 (2002)

    Google Scholar 

  21. Ming-Yong Ye, Wei Jiang, Ping-Xing Chen, Yong-Sheng Zhang, Zheng- Wei Zhou, and Guang-Can Guo. Local distinguishability of orthogonal quantum states and generators of su(N). Phys. Rev. A, 76:032329, Sep 2007.

    Google Scholar 

  22. Ahmed, A-H.M., Zakaria, M.N., Metwally, N.: Teleportation in the presence of technical defects in transmission stations. Appl. Math. Inf. Sci. 6(3), 781 (2012)

    Google Scholar 

  23. Mohamed, A.-B.M.: Quantum discord and its geometric measure with death entanglement in correlated dephasing two qubits system. Quantum. Information. Review. 1, 1-7 (2013)

    Google Scholar 

  24. Da-Chuang Li and Zhuo-Liang Cao. Thermal entanglement in the anisotropic heisenberg “XYZ” model with different inhomogeneous magnetic fields. Optics Communications, 282(6), 1226–1230, (2009)

    Google Scholar 

  25. Zhenghong He, Zuhong Xiong, and Yanli Zhang. Influence of intrinsic decoherence on quantum teleportation via two-qubit heisenberg fXYZg chain. Physics Letters A, 354(12):79 83, 2006.

    Google Scholar 

  26. Majumdar, A.S., Adhikari, S., Ghosh, B., Nayak, N., Roy, S.: Teleportation via maximally and non-maximally entangled mixed states. Quant. Info. Comp. 10, 0398 (2010)

    Google Scholar 

  27. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 50225025 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Haleem Abdel-Aty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this paper

Cite this paper

Abdel-Aty, AH., Zakaria, N., Cheong, L.Y., Metwally, N. (2014). Effect of the Spin–Orbit Interaction on Partial Entangled Quantum Network. In: Herawan, T., Deris, M., Abawajy, J. (eds) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). Lecture Notes in Electrical Engineering, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-4585-18-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-18-7_59

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-17-0

  • Online ISBN: 978-981-4585-18-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics