Skip to main content

Intent-Spectrum BotTracker: Tackling LLM-Based Social Media Bots Through an Enhanced BotRGCN Model with Intention and Entropy Measurement

  • Conference paper
  • First Online:
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15372))

Included in the following conference series:

  • 127 Accesses

Abstract

The rise of social media has brought a wave of automated programs known as social media bots. These bots pose significant challenges by disseminating misinformation, shaping fake trends, and manipulating public opinion. This also leads to a loss of trust in the platform and creates an environment of suspicion. The advent of the Large Language Model has further exacerbated this issue, as bots now generate content that is increasingly indistinguishable from human posts, making bot detection more difficult. Despite extensive research in social media bot detection, very few studies specifically focus on bots leveraging Generative AI technology. To bridge this research gap, in this paper, we introduce a novel enhanced version of the BotRGCN model, called Intent-Spectrum BotTracker, by incorporating three innovative features: user intention, posting message topic, and posting message entropy. Extensive experiments have been conducted, and the results demonstrate that the integration of intention, topics, and entropy metrics significantly enhances the performance of various baseline models, with our enhanced BotRGCN model exhibiting the most superior social media detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://twitter.com/.

  2. 2.

    https://chat.openai.com/.

  3. 3.

    https://gptzero.me/.

References

  1. Abou Daya, A., Salahuddin, M.A., Limam, N., Boutaba, R.: BotChase: Graph-based bot detection using machine learning. IEEE Trans. Netw. Serv. Manage. 17(1), 15–29 (2020)

    Article  Google Scholar 

  2. Alothali, E., Zaki, N., Mohamed, E.A., Alashwal, H.: Detecting social bots on Twitter: a literature review. In: 2018 International Conference on Innovations in Information Technology (IIT), pp. 175–180. IEEE (2018)

    Google Scholar 

  3. Antypas, D., Ushio, A., Camacho-Collados, J., Neves, L., Silva, V., Barbieri, F.: Twitter topic classification. arXiv preprint arXiv:2209.09824 (2022)

  4. Bessi, A., Ferrara, E.: Social bots distort the 2016 U.S. presidential election online discussion. First monday 21(11) (2016). https://doi.org/10.5210/fm.v21i11.7090

  5. Broniatowski, D.A., et al.: Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. Am. J. Public Health 108(10), 1378–1384 (2018)

    Article  Google Scholar 

  6. Busbridge, D., Sherburn, D., Cavallo, P., Hammerla, N.Y.: Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019)

  7. Chiu, T.K.: The impact of generative ai (GenAI) on practices, policies and research direction in education: a case of ChatGPT and midjourney. Interact. Learn. Environ. 1–17 (2023)

    Google Scholar 

  8. Chowdhury, S., et al.: Botnet detection using graph-based feature clustering. J. Big Data 4(1), 1–23 (2017). https://doi.org/10.1186/s40537-017-0074-7

    Article  MathSciNet  Google Scholar 

  9. Feng, S., Wan, H., Wang, N., Li, J., Luo, M.: Twibot-20: a comprehensive Twitter bot detection benchmark. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4485–4494 (2021)

    Google Scholar 

  10. Feng, S., Wan, H., Wang, N., Luo, M.: BotRGCN: Twitter bot detection with relational graph convolutional networks. In: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 236–239 (2021)

    Google Scholar 

  11. Gai, L., Xing, M., Chen, W., Zhang, Y., Qiao, X.: Comparing CNN-based and transformer-based models for identifying lung cancer: which is more effective? Multimed. Tools Appl. 83(20), 59253–59269 (2023). https://doi.org/10.1007/s11042-023-17644-4

    Article  Google Scholar 

  12. Gorwa, R., Guilbeault, D.: Unpacking the social media bot: a typology to guide research and policy. Policy Internet 12(2), 225–248 (2020)

    Article  Google Scholar 

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  14. Heidari, M., James Jr, H., Uzuner, O.: An empirical study of machine learning algorithms for social media bot detection. In: 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–5. IEEE (2021)

    Google Scholar 

  15. Kaubiyal, J., Jain, A.K.: A feature based approach to detect fake profiles in Twitter. In: Proceedings of the 3rd International Conference on Big Data and Internet of Things, pp. 135–139 (2019)

    Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467, 312–322 (2018)

    Article  Google Scholar 

  18. Liu, Y., et al.: Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  19. Lu, H., Gong, D., Li, Z., Liu, F., Liu, F.: BotCS: a lightweight model for large-scale Twitter bot detection comparable to GNN-based models. In: ICC 2023-IEEE International Conference on Communications, pp. 2870–2876. IEEE (2023)

    Google Scholar 

  20. Orabi, M., Mouheb, D., Al Aghbari, Z., Kamel, I.: Detection of bots in social media: a systematic review. Inf. Process. Manag. 57(4), 102250 (2020)

    Article  Google Scholar 

  21. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  22. Rodríguez-Ruiz, J., Mata-Sánchez, J.I., Monroy, R., Loyola-Gonzalez, O., López-Cuevas, A.: A one-class classification approach for bot detection on Twitter. Comput. Secur. 91, 101715 (2020)

    Article  Google Scholar 

  23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  24. Sharevski, F., Jachim, P., Florek, K.: To tweet or not to tweet: Covertly manipulating a Twitter debate on vaccines using malware-induced misperceptions. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–12 (2020)

    Google Scholar 

  25. Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y.: Masked label prediction: Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  27. Wei, F., Nguyen, U.T.: Twitter bot detection using bidirectional long short-term memory neural networks and word embeddings. In: 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 101–109. IEEE (2019)

    Google Scholar 

  28. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  29. Yang, Z., Xue, J., Yang, X., Wang, X., Dai, Y.: VoteTrust: Leveraging friend invitation graph to defend against social network sybils. IEEE Trans. Dependable Secure Comput. 13(4), 488–501 (2015)

    Article  Google Scholar 

Download references

Acknowledgement of Funding

This work was supported by the Jilin Provincial Department of Education Science and Technology Research Projects under Grant No. JJKH20220537KJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodan Wang or Weihua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, J., Li, Z., Wang, X., Li, W., Bai, Q., Nguyen, M. (2025). Intent-Spectrum BotTracker: Tackling LLM-Based Social Media Bots Through an Enhanced BotRGCN Model with Intention and Entropy Measurement. In: Wu, S., Su, X., Xu, X., Kang, B.H. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2024. Lecture Notes in Computer Science(), vol 15372. Springer, Singapore. https://doi.org/10.1007/978-981-96-0026-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0026-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0025-0

  • Online ISBN: 978-981-96-0026-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics