Skip to main content

HMM-VMamba: High-Order Morphological Method Vision Mamba for Medical Image Segmentation

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15283))

Included in the following conference series:

  • 217 Accesses

Abstract

Medical image segmentation is critical for computer-aided medical diagnosis, both convolutional neural networks and the Transformer model have received widespread attention. However, convolutional Neural Networks and Transformers are each limited by global information and computational complexity. Recent studies have shown that the state space model (SSM) represented by Vision Mamba is able to maintain linear computational complexity and to simulate long-range interactions. Inspired by this, we propose the High-order Morphological Method Vision Mamba (HMM-VMamba) in this paper to further enhance the focus on lesion regions. Among its components, the proposed High-order Morphological Method Selective-Scan-2D (HMM-SS2D) exploits high-order information channel interactions to explore morphological knowledge. Moreover, the combination of Local Selective-Scan-2D, External Multi-scale Attention Mechanism, and Convolutional Neural Network improves the capability of local boundary feature learning. We evaluated comparison and ablation experiments on three open-source medical image datasets, and the results demonstrate that HMM-VMamba exhibits strong learning capabilities in medical image segmentation. Github

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Computerized Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  2. Cheng, J.Z., et al.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans. Sci. Rep. 6(1), 24454 (2016)

    Article  Google Scholar 

  3. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172. IEEE (2018)

    Google Scholar 

  4. Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023)

  5. Hu, S., Liao, Z., Xia, Y.: Devil is in channels: Contrastive single domain generalization for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 14–23. Springer (2023)

    Google Scholar 

  6. Liu, Y., et al.: Vmamba: visual state space model. arXiv preprint arXiv:2401.10166 (2024)

  7. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  8. Nekoozadeh, A., Ahmadzadeh, M.R., Mardani, Z.: Multiscale attention via wavelet neural operators for vision transformers. arXiv preprint arXiv:2303.12398 (2023)

  9. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. pp. 234–241. Springer (2015)

    Google Scholar 

  11. Ruan, J., Xiang, S.: Vm-unet: Vision mamba unet for medical image segmentation. arXiv preprint arXiv:2402.02491 (2024)

  12. Ruan, J., Xiang, S., Xie, M., Liu, T., Fu, Y.: Malunet: a multi-attention and light-weight unet for skin lesion segmentation. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1150–1156. IEEE (2022)

    Google Scholar 

  13. Sirinukunwattana, K., Pluim, J.P., Chen, H., Qi, X., Heng, P.A., Guo, Y.B., Wang, L.Y., Matuszewski, B.J., Bruni, E., Sanchez, U., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  14. Wu, R., Liang, P., Huang, X., Shi, L., Gu, Y., Zhu, H., Chang, Q.: Mhorunet: High-order spatial interaction unet for skin lesion segmentation. Biomed. Signal Process. Control 88, 105517 (2024)

    Article  Google Scholar 

  15. Wu, R., Liu, Y., Liang, P., Chang, Q.: H-vmunet: igh-order vision mamba unet for medical image segmentation. arXiv preprint arXiv:2403.13642 (2024)

  16. Wu, R., Liu, Y., Liang, P., Chang, Q.: Ultralight vm-unet: parallel vision mamba significantly reduces parameters for skin lesion segmentation. arXiv preprint arXiv:2403.20035 (2024)

  17. Yuan, H., Chen, L., He, X.: Mmunet: morphological feature enhancement network for colon cancer segmentation in pathological images. Biomed. Signal Process. Control 91, 105927 (2024)

    Article  Google Scholar 

  18. Zhang, M., Yu, Y., Gu, L., Lin, T., Tao, X.: Vm-unet-v2 rethinking vision mamba unet for medical image segmentation. arXiv preprint arXiv:2403.09157 (2024)

  19. Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision mamba: efficient visual representation learning with bidirectional state space model. arXiv preprint arXiv:2401.09417 (2024)

Download references

Acknowledgement

This study was funded by Postgraduate Scientific Research Innovation Project of Hunan Province, China (CX20240836). The Natural Science Foundation of Hunan province, China (2024JJ7429 and 2022JJ3031), Province Undergraduate Education Teaching Reform Research Project, China (202401000802), and Guangxi youth science and technology innovation talents training project, china (2021AC19421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingna Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Y. et al. (2025). HMM-VMamba: High-Order Morphological Method Vision Mamba for Medical Image Segmentation. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15283. Springer, Singapore. https://doi.org/10.1007/978-981-96-0122-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0122-6_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0121-9

  • Online ISBN: 978-981-96-0122-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics