Abstract
The key to effective RGB-T tracking lies in the feature extraction and the feature fusion of RGB and thermal infrared (TIR) images. Currently, the main approach for RGB-T trackers alternates between intra-modal feature extraction and inter-modal feature fusion. However, this design might confuse the pre-trained model and fail to fully exploit the potential of feature learning. Additionally, current RGB-T trackers are primarily based on CNNs or Transformer networks. As is well known, CNNs are limited by their receptive fields, and Transformer networks often suffer from computational inefficiencies. To address these issues, we propose a novel RGB-T tracker based on the Transformer-Mamba Trident-Branch (TMTB) architecture. Our tracker consists of an RGB Branch and a TIR Branch, both utilizing a pre-trained Transformer encoder, and a Fusion Branch based on Mamba. This design ensures the independence of intra-modal feature extraction and inter-modal feature fusion processes. It fully leverages the pre-trained model’s ability to interact between the template and search region within a single modality, allowing the Fusion Branch to focus on mining the capability of inter-modal feature fusion from the search area only. Moreover, we capitalize on the characteristics of Mamba, such as its dynamic parameter property for fusing RGB and TIR features, and its linear complexity for modeling long-range dependencies. Our method ultimately achieves a balanced performance in terms of accuracy, parameters, and speed across multiple datasets, including LasHeR, RGBT234, and RGBT210. Our findings partially validate the effectiveness of Mamba’s characteristics in facilitating Multi-Modal fusion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Cao, B., Guo, J., Zhu, P., Hu, Q.: Bi-directional adapter for multimodal tracking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 927–935 (2024)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fan, H., Yu, Z., Wang, Q., Fan, B., Tang, Y.: Querytrack: joint-modality query fusion network for RGBT tracking. IEEE Trans. Image Process. (2024)
Gu, A., Dao, T.: Mamba: linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023)
Guo, H., Li, J., Dai, T., Ouyang, Z., Ren, X., Xia, S.T.: Mambair: a simple baseline for image restoration with state-space model. arXiv preprint arXiv:2402.15648 (2024)
Hong, L., et al.: Onetracker: unifying visual object tracking with foundation models and efficient tuning. arXiv preprint arXiv:2403.09634 (2024)
Hui, T., et al.: Bridging search region interaction with template for rgb-t tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13630–13639 (2023)
Li, C., Liang, X., Lu, Y., Zhao, N., Tang, J.: RGB-t object tracking: benchmark and baseline. Pattern Recogn. 96, 106977 (2019)
Li, C., Liu, L., Lu, A., Ji, Q., Tang, J.: Challenge-aware RGBT tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 222–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_14
Li, C., et al.: Lasher: a large-scale high-diversity benchmark for RGBT tracking. IEEE Trans. Image Process. 31, 392–404 (2021)
Li, C., Zhao, N., Lu, Y., Zhu, C., Tang, J.: Weighted sparse representation regularized graph learning for RGB-t object tracking. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1856–1864 (2017)
Liu, Y., et al.: Vmamba: visual state space model. arXiv preprint arXiv:2401.10166 (2024)
Lu, A., Li, C., Yan, Y., Tang, J., Luo, B.: Rgbt tracking via multi-adapter network with hierarchical divergence loss. IEEE Trans. Image Process. 30, 5613–5625 (2021)
Lu, A., Qian, C., Li, C., Tang, J., Wang, L.: Duality-gated mutual condition network for RGBT tracking. IEEE Trans. Neural Netw. Learn. Syst. (2022)
Ma, J., Li, F., Wang, B.: U-mamba: enhancing long-range dependency for biomedical image segmentation. arXiv preprint arXiv:2401.04722 (2024)
Peng, J., Zhao, H., Hu, Z.: Dynamic fusion network for rgbt tracking. IEEE Trans. Intell. Transp. Syst. 24(4), 3822–3832 (2022)
Shi, Y., et al.: Vmambair: visual state space model for image restoration. arXiv preprint arXiv:2403.11423 (2024)
Wan, Z., et al.: Sigma: siamese mamba network for multi-modal semantic segmentation. arXiv preprint arXiv:2404.04256 (2024)
Wang, C., et al.: Cross-modal pattern-propagation for RGB-t tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7064–7073 (2020)
Xiao, Y., Yang, M., Li, C., Liu, L., Tang, J.: Attribute-based progressive fusion network for RGBT tracking. Proc. AAAI Conf. Artif. Intell. 36, 2831–2838 (2022)
Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: Segmamba: long-range sequential modeling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560 (2024)
Yang, J., Li, Z., Zheng, F., Leonardis, A., Song, J.: Prompting for multi-modal tracking. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 3492–3500 (2022)
Ye, B., Chang, H., Ma, B., Shan, S., Chen, X.: Joint feature learning and relation modeling for tracking: a one-stream framework. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXII, pp. 341–357. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_20
Zhang, L., Danelljan, M., Gonzalez-Garcia, A., Van De Weijer, J., Shahbaz Khan, F.: Multi-modal fusion for end-to-end RGB-t tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Zhang, P., Zhao, J., Wang, D., Lu, H., Ruan, X.: Visible-thermal UAV tracking: a large-scale benchmark and new baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8886–8895 (2022)
Zhang, T., Guo, H., Jiao, Q., Zhang, Q., Han, J.: Efficient RGB-t tracking via cross-modality distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5404–5413 (2023)
Zhu, J., Lai, S., Chen, X., Wang, D., Lu, H.: Visual prompt multi-modal tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9516–9526 (2023)
Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision mamba: efficient visual representation learning with bidirectional state space model. arXiv preprint arXiv:2401.09417 (2024)
Zhu, Y., Li, C., Luo, B., Tang, J.: Fanet: quality-aware feature aggregation network for robust RGB-t tracking. arXiv preprint arXiv:1811.09855 (2018)
Zhu, Y., Li, C., Tang, J., Luo, B., Wang, L.: RGBT tracking by trident fusion network. IEEE Trans. Circuits Syst. Video Technol. 32(2), 579–592 (2021)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Du, Y., Zeng, B., Wei, Q., Zhang, B., Hu, H. (2025). Transformer-Mamba-Based Trident-Branch RGB-T Tracker. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15283. Springer, Singapore. https://doi.org/10.1007/978-981-96-0122-6_4
Download citation
DOI: https://doi.org/10.1007/978-981-96-0122-6_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0121-9
Online ISBN: 978-981-96-0122-6
eBook Packages: Computer ScienceComputer Science (R0)