Abstract
The delineation of Lymph Nodes (LNs) is pivotal in pinpointing therapeutic targets for radiotherapy in head and neck malignancies. Nevertheless, this endeavor poses a formidable challenge, primarily stemming from the suboptimal contrast against adjacent tissues. This investigation introduces a deep learning methodology aimed at automating the segmentation of LNs within CT scans, offering the following contributions: (1) Expanding upon the 3D Unet model, we incorporate a parallel block consisting of attention gate and squeeze & excitation modules. We extensively evaluate various versions of this parallel block and achieve favorable performance. (2) To address the slow decrease in Dice loss, we introduce a lightweight boundary refinement module. Our proposed method is assessed on a dataset comprising 103 patients and 603 Lymph Nodes (LNs), with 452 nodes used for training and 151 nodes for testing. The node-level Dice similarity coefficient achieved by our method reaches an impressive 0.833.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kihara, S., et al.: Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment. Med. Dosim. 48, 20–24 (2023). https://doi.org/10.1016/j.meddos.2022.09.004
Vischioni, B., et al.: Head and neck cancers: reporting indications and results of hadrontherapy of a dual beam facility. Heal. Technol. (2024). https://doi.org/10.1007/s12553-024-00843-w
Peng, T., et al.: Coarse-to-fine tuning knowledgeable system for boundary delineation in medical images. Appl. Intell. 53, 30642–30660 (2023). https://doi.org/10.1007/s10489-023-05143-w
Peng, T.,et al.: A robust and explainable structure-based algorithm for detecting the organ boundary from ultrasound multi-datasets. J. Digital Imaging (2023). https://doi.org/10.1007/s10278-023-00839-4
Liu, J., et al.: Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest. Med. Phys. 43, 4362–4374 (2016). https://doi.org/10.1118/1.4954009
Xu, G., Cao, H., Dong, Y., Yue, C., Li, K., Tong, Y.: Focal loss function based deeplabv3+ for pathological lymph node segmentation on pet/ct. In: Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing, pp. 24–28. ACM, Tianjin China (2020). https://doi.org/10.1145/3399637.3399651
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Xu, G., Cao, H., Udupa, J.K., Tong, Y., Torigian, D.A.: DiSegNet: a deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images. Comput. Med. Imaging Graph. 88, 101851 (2021). https://doi.org/10.1016/j.compmedimag.2020.101851
Farfan Cabrera, D.L., Grossiord, É., Gogin, N., Papathanassiou, D., Passat, N.: Analysis of lymph node tumor features in PET/CT for segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 588–592 (2021). https://doi.org/10.1109/ISBI48211.2021.9433791
Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Li, Z., Xia, Y.: Deep reinforcement learning for weakly-supervised lymph node segmentation in CT images. IEEE J. Biomed. Health Inform. 25, 774–783 (2021). https://doi.org/10.1109/JBHI.2020.3008759
Chen, L.,et al.: Attention guided lymph node malignancy prediction in head and neck cancer. Int. J. Radiation Oncology*Biology*Phys. 110, 1171–1179 (2021). https://doi.org/10.1016/j.ijrobp.2021.02.004
Bouget, D., Jørgensen, A., Kiss, G., Leira, H.O., Langø, T.: Semantic segmentation and detection of mediastinal lymph nodes and anatomical structures in CT data for lung cancer staging. Int J CARS. 14, 977–986 (2019). https://doi.org/10.1007/s11548-019-01948-8
Islam, M., Li, Y., Ren, H.: Learning where to look while tracking instruments in robot-assisted surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 412–420 (2019)
Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7 (2020). https://doi.org/10.1109/CIBCB48159.2020.9277638
Jetley, S., Lord, N.A., Lee, N., Torr, P.H.S.: Learn to pay attention. In: International Conference on Learning Representations (2018)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Cicek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs] (2017)
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)
Ito, Y.: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Netw. 4, 385–394 (1991). https://doi.org/10.1016/0893-6080(91)90075-G
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)
Peng, T., Zhao, J., Wang, J.: Interpretable mathematical model-guided ultrasound prostate contour extraction using data mining techniques. In: IEEE 15th International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1037–1044 (2021). https://doi.org/10.1109/BIBM52615.2021.9669419
Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993). https://doi.org/10.1109/34.232073
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018)
Islam, M., Wijethilake, N., Ren, H.: Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Comput. Med. Imaging Graph. 91, 101906 (2021). https://doi.org/10.1016/j.compmedimag.2021.101906
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.1109/CVPR.2016.90
Ballester, P., Araujo, R.M.: On the performance of GoogLeNet and AlexNet applied to sketches. In: The AAAI Conference on Artificial Intelligence, p. 5 (2016)
Acknowledgment
This work was supported by the China Postdoctoral Science Foundation (No. 2023M742568), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 24KJB510042) and Kunshan Government Research Fund (No. 24KKSGR028).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Cheng, S., Li, Q., Zhang, G., Zhang, L., Peng, T. (2025). Node-Level Lymph Node Automatic Segmentation in CT Images Using Deep Parallel Structure-Related 3D U-Net Variant. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15284. Springer, Singapore. https://doi.org/10.1007/978-981-96-0125-7_9
Download citation
DOI: https://doi.org/10.1007/978-981-96-0125-7_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0124-0
Online ISBN: 978-981-96-0125-7
eBook Packages: Computer ScienceComputer Science (R0)