Skip to main content

Node-Level Lymph Node Automatic Segmentation in CT Images Using Deep Parallel Structure-Related 3D U-Net Variant

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15284))

Included in the following conference series:

  • 268 Accesses

Abstract

The delineation of Lymph Nodes (LNs) is pivotal in pinpointing therapeutic targets for radiotherapy in head and neck malignancies. Nevertheless, this endeavor poses a formidable challenge, primarily stemming from the suboptimal contrast against adjacent tissues. This investigation introduces a deep learning methodology aimed at automating the segmentation of LNs within CT scans, offering the following contributions: (1) Expanding upon the 3D Unet model, we incorporate a parallel block consisting of attention gate and squeeze & excitation modules. We extensively evaluate various versions of this parallel block and achieve favorable performance. (2) To address the slow decrease in Dice loss, we introduce a lightweight boundary refinement module. Our proposed method is assessed on a dataset comprising 103 patients and 603 Lymph Nodes (LNs), with 452 nodes used for training and 151 nodes for testing. The node-level Dice similarity coefficient achieved by our method reaches an impressive 0.833.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kihara, S., et al.: Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment. Med. Dosim. 48, 20–24 (2023). https://doi.org/10.1016/j.meddos.2022.09.004

    Article  Google Scholar 

  2. Vischioni, B., et al.: Head and neck cancers: reporting indications and results of hadrontherapy of a dual beam facility. Heal. Technol. (2024). https://doi.org/10.1007/s12553-024-00843-w

    Article  Google Scholar 

  3. Peng, T., et al.: Coarse-to-fine tuning knowledgeable system for boundary delineation in medical images. Appl. Intell. 53, 30642–30660 (2023). https://doi.org/10.1007/s10489-023-05143-w

    Article  Google Scholar 

  4. Peng, T.,et al.: A robust and explainable structure-based algorithm for detecting the organ boundary from ultrasound multi-datasets. J. Digital Imaging (2023). https://doi.org/10.1007/s10278-023-00839-4

  5. Liu, J., et al.: Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest. Med. Phys. 43, 4362–4374 (2016). https://doi.org/10.1118/1.4954009

    Article  Google Scholar 

  6. Xu, G., Cao, H., Dong, Y., Yue, C., Li, K., Tong, Y.: Focal loss function based deeplabv3+ for pathological lymph node segmentation on pet/ct. In: Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing, pp. 24–28. ACM, Tianjin China (2020). https://doi.org/10.1145/3399637.3399651

  7. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  8. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  9. Xu, G., Cao, H., Udupa, J.K., Tong, Y., Torigian, D.A.: DiSegNet: a deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images. Comput. Med. Imaging Graph. 88, 101851 (2021). https://doi.org/10.1016/j.compmedimag.2020.101851

    Article  Google Scholar 

  10. Farfan Cabrera, D.L., Grossiord, É., Gogin, N., Papathanassiou, D., Passat, N.: Analysis of lymph node tumor features in PET/CT for segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 588–592 (2021). https://doi.org/10.1109/ISBI48211.2021.9433791

  11. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  12. Li, Z., Xia, Y.: Deep reinforcement learning for weakly-supervised lymph node segmentation in CT images. IEEE J. Biomed. Health Inform. 25, 774–783 (2021). https://doi.org/10.1109/JBHI.2020.3008759

    Article  Google Scholar 

  13. Chen, L.,et al.: Attention guided lymph node malignancy prediction in head and neck cancer. Int. J. Radiation Oncology*Biology*Phys. 110, 1171–1179 (2021). https://doi.org/10.1016/j.ijrobp.2021.02.004

  14. Bouget, D., Jørgensen, A., Kiss, G., Leira, H.O., Langø, T.: Semantic segmentation and detection of mediastinal lymph nodes and anatomical structures in CT data for lung cancer staging. Int J CARS. 14, 977–986 (2019). https://doi.org/10.1007/s11548-019-01948-8

    Article  Google Scholar 

  15. Islam, M., Li, Y., Ren, H.: Learning where to look while tracking instruments in robot-assisted surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 412–420 (2019)

    Google Scholar 

  16. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7 (2020). https://doi.org/10.1109/CIBCB48159.2020.9277638

  17. Jetley, S., Lord, N.A., Lee, N., Torr, P.H.S.: Learn to pay attention. In: International Conference on Learning Representations (2018)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  19. Cicek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

  20. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 [cs] (2017)

  21. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)

    Google Scholar 

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  23. Ito, Y.: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Netw. 4, 385–394 (1991). https://doi.org/10.1016/0893-6080(91)90075-G

    Article  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  25. Peng, T., Zhao, J., Wang, J.: Interpretable mathematical model-guided ultrasound prostate contour extraction using data mining techniques. In: IEEE 15th International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1037–1044 (2021). https://doi.org/10.1109/BIBM52615.2021.9669419

  26. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993). https://doi.org/10.1109/34.232073

    Article  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  28. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018)

    Google Scholar 

  29. Islam, M., Wijethilake, N., Ren, H.: Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction. Comput. Med. Imaging Graph. 91, 101906 (2021). https://doi.org/10.1016/j.compmedimag.2021.101906

    Article  Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.1109/CVPR.2016.90

  31. Ballester, P., Araujo, R.M.: On the performance of GoogLeNet and AlexNet applied to sketches. In: The AAAI Conference on Artificial Intelligence, p. 5 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the China Postdoctoral Science Foundation (No. 2023M742568), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 24KJB510042) and Kunshan Government Research Fund (No. 24KKSGR028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, S., Li, Q., Zhang, G., Zhang, L., Peng, T. (2025). Node-Level Lymph Node Automatic Segmentation in CT Images Using Deep Parallel Structure-Related 3D U-Net Variant. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15284. Springer, Singapore. https://doi.org/10.1007/978-981-96-0125-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0125-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0124-0

  • Online ISBN: 978-981-96-0125-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics