Skip to main content

A Hybrid Model for Public Electric Vehicle Charging Infrastructure Planning

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Abstract

With the rapid growth of electric vehicles (EVs), the shortage and uneven distribution of charging infrastructure have become major issues. This paper proposes a method for public charging infrastructure planning based on a hybrid EV charging model. It estimates EV flow between locations with a gravity model, applies a congestion game model to determine demand distribution across charging stations, and then optimizes charger deployment at each location. The method is demonstrated through a case study in the Sydney metropolitan area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathcal {V}_{od} \bigcap \mathcal {V}_{od_{x}} = \emptyset \), for any \(od, od_{x} \in K\), \(od \ne od_{x} \).

References

  1. de Dios Ortúzar, J., Willumsen, L.G.: Modelling Transport. wiley (2011)

    Google Scholar 

  2. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games Econom. Behav. 21(1–2), 85–101 (1997)

    Article  MathSciNet  Google Scholar 

  3. Hyman, G.M.: The calibration of trip distribution models. Environ Plan A 1(1), 105–112 (1969)

    Article  Google Scholar 

  4. Miller, S.J.: The method of least squares. Math. Depart. Brown Univ. 8, 1–7 (2006)

    Google Scholar 

  5. Powell, W.B., Sheffi, Y.: The convergence of equilibrium algorithms with predetermined step sizes. Transp. Sci. 16(1), 45–55 (1982)

    Article  MathSciNet  Google Scholar 

  6. Qiao, J., De Jonge, D., Zhang, D., Sierra, C., Simoff, S.: A hybrid model of traffic assignment and control for autonomous vehicles. In: International Conference on Principles and Practice of Multi-Agent Systems, pp. 208–226. Springer (2022). https://doi.org/10.1007/978-3-031-21203-1_13

  7. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Internat. J. Game Theory 2, 65–67 (1973)

    Article  MathSciNet  Google Scholar 

  8. Sheng, M.S., Sreenivasan, A.V., Sharp, B., Du, B.: Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: a comparative study in oceania. Energy Policy 158, 112552 (2021)

    Article  Google Scholar 

  9. Wang, Q., Zhang, D., Du, B.: A queue balancing approach for electric vehicle charging allocation. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems. pp. 2750–2755. IEEE (2022)

    Google Scholar 

  10. Xiao, D., An, S., Cai, H., Wang, J., Cai, H.: An optimization model for electric vehicle charging infrastructure planning considering queuing behavior with finite queue length. J. Energy Storage 29, 101317 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Zhang, D., Du, B. (2025). A Hybrid Model for Public Electric Vehicle Charging Infrastructure Planning. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15285. Springer, Singapore. https://doi.org/10.1007/978-981-96-0128-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0128-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0127-1

  • Online ISBN: 978-981-96-0128-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics