Skip to main content

From First-Order to Second-Order Rationality: Advancing Game Convergence with Dynamic Weighted Fictitious Play

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Abstract

Constructing effective algorithms to converge to Nash Equilibrium (NE) is a important problem in algorithmic game theory. Prior research generally posits that the upper bound on the convergence rate for games is \(O\left( T^{-1/2}\right) \). This paper introduces a novel perspective, positing that the key to accelerating convergence in game theory is “rationality”. Based on this concept, we propose a Dynamic Weighted Fictitious Play (DW-FP) algorithm. We demonstrate that this algorithm can converge to a NE and exhibits a convergence rate of \(O(T^{-1})\) in experimental evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowling, M., Burch, N., Johanson, M., Tammelin, O.: Heads-up limit hold’em poker is solved. Science 347(6218), 145–149 (2015)

    Article  Google Scholar 

  2. Brown, N., Sandholm, T.: Superhuman AI for multiplayer poker. Science 365(6456), 885–890 (2019)

    Article  MathSciNet  Google Scholar 

  3. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

    Google Scholar 

  4. Lanctot, M., Waugh, K., Zinkevich, M., Bowling, M.: Monte Carlo sampling for regret minimization in extensive games. Adv. Neural Inf. Process. Syst. 22 (2009)

    Google Scholar 

  5. Brown, N., Sandholm, T.: Regret-based pruning in extensive-form games. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  6. Tammelin, O.: Solving large imperfect information games using CFR+. arXiv preprint arXiv:1407.5042 (2014)

  7. Brown, N., Sandholm, T.: Solving imperfect-information games via discounted regret minimization. Proc. AAAI Conf. Artif. Intell. 33(01), 1829–1836 (2019)

    Google Scholar 

  8. Zhang, H., Lerer, A., Brown, N.: Equilibrium finding in normal-form games via greedy regret minimization. Proc. AAAI Conf. Artif. Intell. 36(9), 9484–9492 (2022). https://doi.org/10.1609/aaai.v36i9.21181

    Article  Google Scholar 

  9. Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod Allocat. 13(1), 374 (1951)

    MathSciNet  Google Scholar 

  10. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games, vol. 2 (1998)

    Google Scholar 

  11. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. Adv. Neural Inf. Process. Syst. 20 (2007)

    Google Scholar 

  12. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. (1994)

    Google Scholar 

  13. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)

    Book  Google Scholar 

  14. Karlin, S.: Mathematical Methods and Theory in Games, Programming, and Economics, vol. 2. Courier Corporation (2003)

    Google Scholar 

  15. Brown, N.: Equilibrium finding for large adversarial imperfect-information games. Ph.D. thesis (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ju, Q., Hei, F., Liu, Y., Fang, Z., Luo, Y. (2025). From First-Order to Second-Order Rationality: Advancing Game Convergence with Dynamic Weighted Fictitious Play. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15285. Springer, Singapore. https://doi.org/10.1007/978-981-96-0128-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0128-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0127-1

  • Online ISBN: 978-981-96-0128-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics