Skip to main content

Enabling Visual Intelligence by Leveraging Visual Object States in a Neurosymbolic Framework

A Position Paper

  • Conference paper
  • First Online:
AI 2024: Advances in Artificial Intelligence (AI 2024)

Abstract

This paper investigates the potential of integrating visual object states for developing methods addressing complex visual intelligence tasks such as Long-Term Action anticipation (LTAA) and proposes that this to achieve this with the aid of a Neurosymbolic (NeSy) framework. We consider that this approach could offer significant advancements in applications requiring nuanced understanding and anticipation of future scenarios and could serve as an inspiration for the further development of Nesy methods exhibiting Visual Intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellotto, N., Castri, L., Hanheide, M., Mghames, S.: A neuro-symbolic approach for enhanced human motion prediction. repository.lincoln.ac.uk (2023)

    Google Scholar 

  2. Bhagat, S., Stepputtis, S., Campbell, J.: Knowledge-guided short-context action anticipation in human-centric videos. arXiv preprint arXiv:2309.05943 (2023)

  3. Das, S., Ryoo, M.: Video+ clip baseline for ego4d long-term action anticipation. arXiv preprint arXiv:2207.00579 (2022)

  4. De Raedt, L., Dumančić, S., Manhaeve, R., Marra, G.: From statistical relational to neuro-symbolic artificial intelligence. arXiv preprint arXiv:2003.08316 (2020)

  5. Garcez, A.D., Lamb, L.C.: Neurosymbolic AI: The 3rd wave. Artif. Intell. Rev. 56(11), 12387–12406 (2023)

    Google Scholar 

  6. Geman, D., Geman, S., Hallonquist, N., et al.: Visual turing test for computer vision systems. Proc. Natl. Acad. Sci. 112(12), 3618–3623 (2015). https://doi.org/10.1073/pnas.1422953112

  7. Gong, D., Lee, J., Kim, M., Ha, S.: Future transformer for long-term action anticipation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4377–4386 (2022)

    Google Scholar 

  8. Gouidis, F., Vassiliades, A., Patkos, T., Argyros, A.A., Bassiliades, N., Plexousakis, D.: A review on intelligent object perception methods combining knowledge-based reasoning and machine learning. In: Martin, A., et al. (eds.) Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, 23–25 March 2020, Volume I. CEUR Workshop Proceedings, vol. 2600. CEUR-WS.org (2020). https://ceur-ws.org/Vol-2600/paper7.pdf

  9. Grauman, K., et al.: Ego4d: around the world in 3,000 hours of egocentric video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18995–19012 (2022)

    Google Scholar 

  10. Hitzler, P., Eberhart, A., Ebrahimi, M.: Neuro-symbolic approaches in artificial intelligence. Natl. Sci. Rev. 9(6) (2022)

    Google Scholar 

  11. Huang, D., Hilliges, O., Van Gool, L., Wang, X.: Palm: predicting actions through language models@ ego4d long-term action anticipation challenge 2023. arXiv preprint arXiv:2306.16545 (2023)

  12. Katz, M., Srinivas, K., Sohrabi, S.: Scenario planning in the wild: a neuro-symbolic approach. In: Proceedings of the FinPlan Workshop at ICAPS (2021)

    Google Scholar 

  13. Ke, Q., Fritz, M., Schiele, B.: Time-conditioned action anticipation in one shot. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11004–11013 (2019)

    Google Scholar 

  14. Mascaró, E., Ahn, H., Lee, D.: Intention-conditioned long-term human egocentric action anticipation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2164–2173 (2023)

    Google Scholar 

  15. Mghames, S., Castri, L., Hanheide, M.: A neuro-symbolic approach for enhanced human motion prediction. In: 2023 International Joint Conference on Neural Networks (IJCNN). IEEE (2023). https://ieeexplore.ieee.org/abstract/document/10191970/

  16. Nawhal, M., Jyothi, A.A., Mori, G.: Rethinking learning approaches for long-term action anticipation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 558–576. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4_32

    Chapter  Google Scholar 

  17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P). pp. 372–387. IEEE (2016). https://ieeexplore.ieee.org/document/7467366

  18. Patsch, C., Zhang, J., Wu, Y., Zakour, M.: Long-term action anticipation based on contextual alignment. In: 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)

    Google Scholar 

  19. Romero, O., Zimmerman, J., Steinfeld, A.: Synergistic integration of large language models and cognitive architectures for robust AI: an exploratory analysis. In: Proceedings of the AAAI Symposium (2023). https://ojs.aaai.org/index.php/AAAI-SS/article/view/27706

  20. Thakur, S., Beyan, C., Morerio, P.: Leveraging next-active objects for context-aware anticipation in egocentric videos. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2024)

    Google Scholar 

  21. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The computational limits of deep learning. arXiv preprint arXiv:2007.05558 (2020).

  22. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6720–6731 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Gouidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gouidis, F., Papoutsakis, K., Patkos, T., Argyros, A., Plexousakis, D. (2025). Enabling Visual Intelligence by Leveraging Visual Object States in a Neurosymbolic Framework. In: Gong, M., Song, Y., Koh, Y.S., Xiang, W., Wang, D. (eds) AI 2024: Advances in Artificial Intelligence. AI 2024. Lecture Notes in Computer Science(), vol 15443. Springer, Singapore. https://doi.org/10.1007/978-981-96-0351-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0351-0_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0350-3

  • Online ISBN: 978-981-96-0351-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics