Skip to main content

SARA: A Sparsity-Aware Efficient Oblivious Aggregation Service for Federated Matrix Factorization

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2024 (WISE 2024)

Abstract

Federated matrix factorization (FedMF) has recently emerged as a privacy-friendly paradigm which runs matrix factorization (MF) in a federated learning (FL) setting and enables users to keep their individual rating data local in the training process. In FedMF, users only need to share out item gradients for aggregation. However, prior work has shown that the item gradients, if directly exposed, can still leak users’ rating data. Meanwhile, the rating data are typically sparse and simply uploading the gradients of rated items will leak which and how many items a user rates. In light of the above, in this paper, we present SARA, a new sparsity-aware efficient oblivious aggregation service for FedMF. SARA protects the confidentiality of item gradients as well as hides which and how many items a user rates, through a custom sparsity-aware design that delicately builds on differential privacy and lightweight cryptography. Extensive experiments over real-world datasets demonstrate that SARA is utility-preserving and can bring the users significant savings (up to 98.28%) in the number of transmitted item gradients, compared to the baseline of fully transmitting gradients for all possible items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://grouplens.org/datasets/movielens.

References

  1. Apple and Google: Exposure notification privacy-preserving analytics (ENPA) white paper (2021). https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA%20White%20Paper.pdf. Accessed 1 June 2022

  2. Bell, J., et al.: Distributed, private, sparse histograms in the two-server model. In: Proceedings of ACM CCS (2022)

    Google Scholar 

  3. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12

    Chapter  Google Scholar 

  4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Proceedings of ACM SIGSAC (2016)

    Google Scholar 

  5. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2021)

    Article  Google Scholar 

  6. Chai, D., Wang, L., Chen, K., Yang, Q.: Efficient federated matrix factorization against inference attacks. ACM Trans. Intell. Syst. Technol. 13(4), 59:1–59:20 (2022)

    Google Scholar 

  7. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at scale: local differential privacy in practice. In: Proceedings of ACM SIGMOD (2018)

    Google Scholar 

  8. Curran, M., Liang, X., Gupta, H., Pandey, O., Das, S.R.: ProCSA: protecting privacy in crowdsourced spectrum allocation. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 556–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_27

    Chapter  Google Scholar 

  9. Dauterman, E., Rathee, M., Popa, R.A., Stoica, I.: Waldo: a private time-series database from function secret sharing. In: Proceedings of IEEE S &P (2022)

    Google Scholar 

  10. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: Proceedings of NDSS (2015)

    Google Scholar 

  11. Du, M., Wu, S., Wang, Q., Chen, D., Jiang, P., Mohaisen, A.: GraphShielad: dynamic large graphs for secure queries with forward privacy. IEEE Trans. Knowl. Data Eng. 34(7), 3295–3308 (2022)

    Google Scholar 

  12. Dwork, C.: Differential privacy. In: Proceedings of ICALP (2006)

    Google Scholar 

  13. Dwork, C., McSherry, F., Nissim, K., Smith, A.D.: Calibrating noise to sensitivity in private data analysis. In: Proceedings of TCC (2006)

    Google Scholar 

  14. He, X., Machanavajjhala, A., Flynn, C.J., Srivastava, D.: Composing differential privacy and secure computation: a case study on scaling private record linkage. In: Proceedings of ACM CCS (2017)

    Google Scholar 

  15. Katz, J., Lindell, Y.: Handling expected polynomial-time strategies in simulation-based security proofs. In: Proceedings of TCC (2005)

    Google Scholar 

  16. Kim, S., Kim, J., Koo, D., Kim, Y., Yoon, H., Shin, J.: Efficient privacy-preserving matrix factorization via fully homomorphic encryption: extended abstract. In: Proceedings of ACM AsiaCCS (2016)

    Google Scholar 

  17. Koenigstein, N., Ram, P., Shavitt, Y.: Efficient retrieval of recommendations in a matrix factorization framework. In: Proceedings of CIKM (2012)

    Google Scholar 

  18. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  19. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  20. Li, Z., Ding, B., Zhang, C., Li, N., Zhou, J.: Federated matrix factorization with privacy guarantee. VLDB Endow. 15(4), 900–913 (2021)

    Article  Google Scholar 

  21. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of AISTATS (2017)

    Google Scholar 

  22. Mozilla Security Blog: Next steps in privacy-preserving telemetry with prio (2022). https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/

  23. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-preserving matrix factorization. In: Proceedings of ACM CCS (2013)

    Google Scholar 

  24. Ryffel, T., Tholoniat, P., Pointcheval, D., Bach, F.R.: AriaNN: low-interaction privacy-preserving deep learning via function secret sharing. Proc. Priv. Enhancing Technol. 2022(1), 291–316 (2022)

    Article  Google Scholar 

  25. Shin, H., Kim, S., Shin, J., Xiao, X.: Privacy enhanced matrix factorization for recommendation with local differential privacy. IEEE Trans. Knowl. Data Eng. 30(9), 1770–1782 (2018)

    Article  Google Scholar 

  26. Tan, S., Knott, B., Tian, Y., Wu, D.J.: CryptGPU: fast privacy-preserving machine learning on the GPU. In: Proceedings of IEEE S &P (2021)

    Google Scholar 

  27. Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscating user gender based on ratings. In: Proceedings of ACM RecSys (2012)

    Google Scholar 

  28. Zhou, H., Yang, G., Xiang, Y., Bai, Y., Wang, W.: A lightweight matrix factorization for recommendation with local differential privacy in big data. IEEE Trans. Big Data 9(1), 160–173 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515010714 and No. 2024A1515012299), and by the Shenzhen Science and Technology Program (No. JCYJ20220531095416037 and No. JCYJ20230807094411024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Xiong, T., Ouyang, H., Wang, S., Hua, Z., Gao, Y. (2025). SARA: A Sparsity-Aware Efficient Oblivious Aggregation Service for Federated Matrix Factorization. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15437. Springer, Singapore. https://doi.org/10.1007/978-981-96-0567-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0567-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0566-8

  • Online ISBN: 978-981-96-0567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics