Skip to main content

Intellectual Property Protection of Diffusion Models via the Watermark Diffusion Process

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2024 (WISE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15437))

Included in the following conference series:

  • 390 Accesses

Abstract

Diffusion models have demonstrated remarkable capabilities across a range of tasks and have become the backbone of various web applications, such as text-to-image, image-to-image, and text-to-video generation. Obtaining large, high-performance diffusion models demands significant resources, highlighting their importance as Intellectual Property (IP) worth protecting. Watermarking is widely adopted as the mainstream technique for model IP protection. However, existing watermarking methods designed for discriminative models are insufficient for protection diffusion models. This paper introduces WDM, a novel watermarking solution for diffusion models without imprinting the watermark during task generation. It involves training a model to concurrently learn a Watermark Diffusion Process (WDP) for embedding watermarks alongside the standard diffusion process for task generation. We provide a detailed theoretical analysis of the training and sampling in WDP, relating it to a shifted Gaussian diffusion process via the same reverse noise. Watermarks are extracted using a designated trigger, ensuring they stay unexposed during the primary task sampling. We further present a complete framework for verifying copyright infringement through hypothesis testing. Extensive experiments have validated the effectiveness and robustness of our approach in various trigger and watermark data configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adi, Y., Baum, C., Cissé, M., Pinkas, B., Keshet, J.: Turning your weakness into a strength: watermarking deep neural networks by backdooring. In: USENIX Security (2018)

    Google Scholar 

  2. Chen, H., Rouhani, B.D., Fu, C., Zhao, J., Koushanfar, F.: Deepmarks: A secure fingerprinting framework for digital rights management of deep learning models. In: ICMR (2019)

    Google Scholar 

  3. Chen, W., Song, D., Li, B.: Trojdiff: trojan attacks on diffusion models with diverse targets. In: CVPR (2023)

    Google Scholar 

  4. Chou, S., Chen, P., Ho, T.: How to backdoor diffusion models? In: CVPR (2022)

    Google Scholar 

  5. Fei, J., Xia, Z., Tondi, B., Barni, M.: Supervised GAN watermarking for intellectual property protection. In: WIFS (2022)

    Google Scholar 

  6. Garg, S., Dhamo, H., Farshad, A., Musatian, S., Navab, N., Tombari, F.: Unconditional scene graph generation. In: ICCV (2021)

    Google Scholar 

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  8. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

    Google Scholar 

  9. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. In: NeurIPS (2022)

    Google Scholar 

  10. Jia, H., Choquette-Choo, C.A., Chandrasekaran, V., Papernot, N.: Entangled watermarks as a defense against model extraction. In: USENIX Security (2021)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. LeCun, Y., et al.: Learning algorithms for classification: a comparison on handwritten digit recognition. Neural networks: the statistical mechanics perspective (1995)

    Google Scholar 

  14. Li, Y., Wang, H., Barni, M.: A survey of deep neural network watermarking techniques. In: Neurocomputing (2021)

    Google Scholar 

  15. Liu, Y., Li, Z., Backes, M., Shen, Y., Zhang, Y.: Watermarking diffusion model. arXiv preprint arXiv:2305.12502 (2023)

  16. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  17. Merrer, E.L., Pérez, P., Trédan, G.: Adversarial Frontier Stitching for Remote Neural Network Watermarking. Neural Comput, Appl (2020)

    Book  Google Scholar 

  18. Ong, D.S., Chan, C.S., Ng, K.W., Fan, L., Yang, Q.: Protecting intellectual property of generative adversarial networks from ambiguity attacks. In: CVPR (2021)

    Google Scholar 

  19. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  20. Peng, S., Chen, Y., Xu, J., Chen, Z., Wang, C., Jia, X.: Intellectual property protection of dnn models. World Wide Web (2022)

    Google Scholar 

  21. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  22. Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML (2021)

    Google Scholar 

  23. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  24. Saharia, C., et al.: Palette: Image-to-image diffusion models. In: SIGGRAPH (2022)

    Google Scholar 

  25. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: NeurIPS (2016)

    Google Scholar 

  26. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML (2015)

    Google Scholar 

  27. Szyller, S., Atli, B.G., Marchal, S., Asokan, N.: DAWN: dynamic adversarial watermarking of neural networks. In: MM (2021)

    Google Scholar 

  28. Uchida, Y., Nagai, Y., Sakazawa, S., Satoh, S.: Embedding watermarks into deep neural networks. In: ICMR (2017)

    Google Scholar 

  29. Wei, Y., et al.: Meta-learning without data via unconditional diffusion models. IEEE Transactions on Circuits and Systems for Video Technology (2024)

    Google Scholar 

  30. Wu, D., Wang, Y.: Adversarial neuron pruning purifies backdoored deep models. In: NeurIPS (2021)

    Google Scholar 

  31. Wu, J.Z., et al.: Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation. In: CVPR (2023)

    Google Scholar 

  32. Yu, N., Skripniuk, V., Abdelnabi, S., Fritz, M.: Artificial fingerprinting for generative models: Rooting deepfake attribution in training data. In: ICCV (2021)

    Google Scholar 

  33. Zeng, Y., Chen, S., Park, W., Mao, Z.M., Jin, M., Jia, R.: Adversarial unlearning of backdoors via implicit hypergradient. arXiv preprint arXiv:2110.03735 (2021)

  34. Zhang, Z., Han, L., Ghosh, A., Metaxas, D.N., Ren, J.: Sine: Single image editing with text-to-image diffusion models. In: CVPR (2023)

    Google Scholar 

  35. Zhao, Y., Pang, T., Du, C., Yang, X., Cheung, N., Lin, M.: A recipe for watermarking diffusion models. arXiv preprint arXiv:2303.10137 (2023)

Download references

Acknowledgments

The authors would like to acknowledge the financial support of this work by the Hong Kong RGC RIF grant No. R1012-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Peng .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, S., Chen, Y., Wang, C., Jia, X. (2025). Intellectual Property Protection of Diffusion Models via the Watermark Diffusion Process. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15437. Springer, Singapore. https://doi.org/10.1007/978-981-96-0567-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0567-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0566-8

  • Online ISBN: 978-981-96-0567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics