Abstract
Nowadays, trajectory data is widely accessible and can be beneficial for various practical applications, such as location-based services, personalized recommendation, and traffic management. Despite the immense benefits in these scenarios, trajectories can reveal highly sensitive information about individuals, such as personal characteristics, movement patterns, visited locations, and social connections. Consequently, it is imperative to prioritize protecting privacy when conducting trajectory analyses. Existing privacy-preserving techniques focus on optimizing data utility but often overlook the diverse requirements for privacy preservation. To address this limitation, this paper aims to maximize both privacy and utility as a multi-objective optimization problem for Privacy-Preserving Trajectory Data Publishing (PPTDP). We propose a novel algorithm called Dynamic-Parameter Genetic Algorithm (DPGA) that utilizes the non-dominated sorting multi-objective optimization approach and genetic algorithm (GA). This algorithm designs the mutation and crossover strategies to dynamically adjust the mutation and crossover parameters and improve the solution’s quality. It also adopts a scramble mutation strategy that helps to achieve better population diversity. Extensive experiments demonstrate the efficiency of the proposed algorithm in terms of solution accuracy and convergence result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abul, O., Bonchi, F., Nanni, M.: Never walk alone: uncertainty for anonymity in moving objects databases. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 376–385. IEEE (2008)
Abul, O., Bonchi, F., Nanni, M.: Anonymization of moving objects databases by clustering and perturbation. Inf. Syst. 35(8), 884–910 (2010)
Chen, H., Wu, G., Pedrycz, W., Suganthan, P.N., Xing, L., Zhu, X.: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1507–1522 (2019)
Damia, A., Esnaashari, M., Parvizimosaed, M.: Adaptive genetic algorithm based on mutation and crossover and selection probabilities. In: 2021 7th International Conference on Web Research (ICWR), pp. 86–90. IEEE (2021)
Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10(4), 371–395 (2002)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
Ge, Y.F., Bertino, E., Wang, H., Cao, J., Zhang, Y.: Distributed cooperative coevolution of data publishing privacy and transparency. ACM Trans. Knowl. Discov. Data 18(1), 1–23 (2023)
Ge, Y.F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: Knowledge transfer-based distributed differential evolution for dynamic database fragmentation. Knowl.-Based Syst. 229, 107325 (2021). https://doi.org/10.1016/j.knosys.2021.107325
Ge, Y.-F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 1–19 (2021). https://doi.org/10.1007/s00778-021-00718-w
Ge, Y.F., et al.: Evolutionary dynamic database partitioning optimization for privacy and utility. IEEE Trans. Dependable Secure Comput. (2023)
Ge, Y.F., Wang, H., Cao, J., Zhang, Y.: An information-driven genetic algorithm for privacy-preserving data publishing. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds.) WISE 2022. LNCS, vol. 13724, pp. 340–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20891-1_24
Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., Prasath, V.S.: Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach. Information 10(12), 390 (2019)
Jahan, S., Ge, Y.F., Kabir, E., Wang, H.: Analysis and protection of public medical dataset: from privacy perspective. In: Li, Y., Huang, Z., Sharma, M., Chen, L., Zhou, R. (eds.) HIS 2023. LNCS, vol. 14305, pp. 79–90. Springer, Cham (2023). https://doi.org/10.1007/978-981-99-7108-4_7
Jin, F., Hua, W., Francia, M., Chao, P., Orlowska, M.E., Zhou, X.: A survey and experimental study on privacy-preserving trajectory data publishing. IEEE Trans. Knowl. Data Eng. 35(6), 5577–5596 (2022)
Jin, F., Hua, W., Ruan, B., Zhou, X.: Frequency-based randomization for guaranteeing differential privacy in spatial trajectories. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1727–1739. IEEE (2022)
Kabir, M.E., Mahmood, A.N., Wang, H., Mustafa, A.K.: Microaggregation sorting framework for k-anonymity statistical disclosure control in cloud computing. IEEE Trans. Cloud Comput. 8(2), 408–417 (2020). https://doi.org/10.1109/tcc.2015.2469649
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2006)
Lv, Z., Lou, R., Singh, A.K.: Ai empowered communication systems for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 22(7), 4579–4587 (2020)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3-es (2007)
Sweeney, L.: k-anonymity: a model for protecting privacy. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)
Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in moving objects databases. ACM Trans. Database Syst. (TODS) 29(3), 463–507 (2004)
Tu, Z., Zhao, K., Xu, F., Li, Y., Su, L., Jin, D.: Protecting trajectory from semantic attack considering \(k\)-anonymity, \(l\)-diversity, and \(t\)-closeness. IEEE Trans. Netw. Serv. Manage. 16(1), 264–278 (2019). https://doi.org/10.1109/tnsm.2018.2877790
Wang, H., Jiang, X., Kambourakis, G.: Special issue on security, privacy and trust in network-based big data. Inf. Sci. 318, 48–50 (2015)
Wang, H., Zhang, Y., Cao, J.: Ubiquitous computing environments and its usage access control. In: Proceedings of the 1st International Conference on Scalable Information Systems, pp. 6–es (2006)
Yin, J., Chen, G., Hong, W., Cao, J., Wang, H., Miao, Y.: A heterogeneous graph-based semi-supervised learning framework for access control decision-making. World Wide Web 27(4), 35 (2024)
Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. World Wide Web 1–23 (2022)
Yin, J., Tang, M., Cao, J., You, M., Wang, H., Alazab, M.: Knowledge-driven cybersecurity intelligence: software vulnerability coexploitation behavior discovery. IEEE Trans. Industr. Inf. 19(4), 5593–5601 (2022)
You, M., Ge, Y.F., Wang, K., Wang, H., Cao, J., Kambourakis, G.: Hierarchical adaptive evolution framework for privacy-preserving data publishing. World Wide Web 27(4), 49 (2024)
You, M., et al.: A knowledge graph empowered online learning framework for access control decision-making. World Wide Web 26(2), 827–848 (2023)
Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 316–324 (2011)
Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 99–108 (2010)
Zhang, J., Huang, Q., Huang, Y., Ding, Q., Tsai, P.W.: DP-TrajGAN: a privacy-aware trajectory generation model with differential privacy. Futur. Gener. Comput. Syst. 142, 25–40 (2023)
Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)
Zhao, B., Chen, W.N., Wei, F.F., Liu, X., Pei, Q., Zhang, J.: PEGA: a privacy-preserving genetic algorithm for combinatorial optimization. IEEE Trans. Cybern. (2024)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jahan, S., Ge, YF., Wang, H., Kabir, E. (2025). Dynamic-Parameter Genetic Algorithm for Multi-objective Privacy-Preserving Trajectory Data Publishing. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15440. Springer, Singapore. https://doi.org/10.1007/978-981-96-0576-7_4
Download citation
DOI: https://doi.org/10.1007/978-981-96-0576-7_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0575-0
Online ISBN: 978-981-96-0576-7
eBook Packages: Computer ScienceComputer Science (R0)