Abstract
Recent advances in Quadruple Aspect-Based Sentiment Analysis (Quad-ABSA) have heavily relied on datasets from SemEval challenges, which raises concerns regarding the generalizability of these models across diverse domains. This study addresses this limitation by introducing a novel dataset specifically tailored to the hospitality sector, offering a unique benchmark to evaluate Quad-ABSA models. Our experiments reveal a notable gap: while existing models perform well with SemEval datasets, they fail to maintain their effectiveness when applied to our new domain-specific dataset. This underperformance highlights the critical importance of understanding dataset nuances, including domain-specific characteristics and annotation quality, which significantly influence model performance and generalization. Our research highlights the necessity for broader evaluations of Quad-ABSA models, advocating for the development and utilization of diverse and high-quality datasets to ensure robust and versatile sentiment analysis solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alharbi, M., Yin, J., Wang, H.: Surveying the landscape: compound methods for aspect-based sentiment analysis. In: Bao, Z., Borovica-Gajic, R., Qiu, R., Choudhury, F., Yang, Z. (eds.) Australasian Database Conference. LNCS, pp. 101–115. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47843-7_8
Cai, H., et al.: Memd-ABSA: a multi-element multi-domain dataset for aspect-based sentiment analysis. arXiv preprint arXiv:2306.16956 (2023)
Cai, H., Xia, R., Yu, J.: Aspect-category-opinion-sentiment quadruple extraction with implicit aspects and opinions. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 340–350 (2021)
Chebolu, S.U.S., Dernoncourt, F., Lipka, N., Solorio, T.: Survey of aspect-based sentiment analysis datasets. arXiv preprint arXiv:2204.05232 (2022)
Chebolu, S.U.S., Dernoncourt, F., Lipka, N., Solorio, T.: OATS: a challenge dataset for opinion aspect target sentiment joint detection for aspect-based sentiment analysis. In: Calzolari, N., Kan, M.Y., Hoste, V., Lenci, A., Sakti, S., Xue, N. (eds.) Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp. 12336–12347. ELRA and ICCL, Torino, Italia (2024)
Di Quilio, L., Fioravanti, F., et al.: Evaluating the aspect-category-opinion-sentiment analysis task on a custom dataset. In: Proceedings of NL4AI 2023: Seventh Workshop on Natural Language for Artificial Intelligence. CEUR-WS (2023)
Du, J., Rong, J., Wang, H., Zhang, Y.: Neighbor-aware review helpfulness prediction. Decis. Support Syst. 148, 113581 (2021)
Feng, J., Li, H., Yu, Z.: Enhancing aspect-based sentiment analysis with dependency-attention GCN and mutual assistance mechanism. J. Intell. Inf. Syst. 62(1), 163–189 (2024)
Gao, T., et al.: Lego-ABSA: a prompt-based task assemblable unified generative framework for multi-task aspect-based sentiment analysis. In: Proceedings of the 29th International conference on computational linguistics, pp. 7002–7012 (2022)
Ge, Y.F., Wang, H., Cao, J., Zhang, Y.: An information-driven genetic algorithm for privacy-preserving data publishing. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds.) WISE 2022. LNCS, vol. 13724, pp. 340–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20891-1_24
Ghiasvand Mohammadkhani, M., Ranjbar, N., Momtazi, S.: E2tp: element to tuple prompting improves aspect sentiment tuple prediction. arXiv e-prints pp. arXiv–2405 (2024)
Han, S., Chen, Y., Chen, G., Yin, J., Wang, H., Cao, J.: Multi-step reinforcement learning-based offloading for vehicle edge computing. In: 2023 15th International Conference on Advanced Computational Intelligence (ICACI), pp. 1–8. IEEE (2023)
Han, Y., et al.: Extracting latent needs from online reviews through deep learning based language model. Proc. Des. Soc. 3, 1855–1864 (2023)
Hu, M., et al.: Uncertainty-aware unlikelihood learning improves generative aspect sentiment quad prediction. arXiv preprint arXiv:2306.00418 (2023)
Hu, M., Wu, Y., Gao, H., Bai, Y., Zhao, S.: Improving aspect sentiment quad prediction via template-order data augmentation. arXiv preprint arXiv:2210.10291 (2022)
Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22, 2545–2560 (2019)
Kabir, M.E., Mahmood, A.N., Wang, H., Mustafa, A.K.: Microaggregation sorting framework for k-anonymity statistical disclosure control in cloud computing. IEEE Trans. Cloud Comput. 8(2), 408–417 (2015)
Mao, Y., Shen, Y., Yang, J., Zhu, X., Cai, L.: Seq2Path: generating sentiment tuples as paths of a tree. In: Findings of the Association for Computational Linguistics: ACL 2022. pp. 2215–2225. Association for Computational Linguistics, Dublin, Ireland (2022)
Nie, Y., Fu, J., Zhang, Y., Li, C.: Modeling implicit variable and latent structure for aspect-based sentiment quadruple extraction. Neurocomputing 586, 127642 (2024)
Peng, H., Xu, L., Bing, L., Huang, F., Lu, W., Si, L.: Knowing what, how and why: a near complete solution for aspect-based sentiment analysis (2019)
Peper, J., Wang, L.: Generative aspect-based sentiment analysis with contrastive learning and expressive structure. In: Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, pp. 6089–6095. Association for Computational Linguistics (2022)
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495 (2015)
Pontiki, M., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: ProWorkshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics (2016)
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, pp. 27–35. Association for Computational Linguistics (2014)
Qin, Y., Sheng, Q.Z., Falkner, N.J., Dustdar, S., Wang, H., Vasilakos, A.V.: When things matter: a data-centric view of the internet of things. arXiv preprint arXiv:1407.2704 (2014)
Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Disc. 23(3), 379–406 (2011)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: EEG sleep stages analysis and classification based on weighed complex network features. IEEE Trans. Emerg. Top. Comput. Intell. 5(2), 236–246 (2018)
Wan, H., Yang, Y., Du, J., Liu, Y., Qi, K., Pan, J.Z.: Target-aspect-sentiment joint detection for aspect-based sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 9122–9129 (2020)
Wang, A., Jiang, J., Ma, Y., Liu, A., Okazaki, N.: Generative data augmentation for aspect sentiment quad prediction. In: Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (* SEM 2023), pp. 128–140 (2023)
Wang, H., Zhang, Y., Cao, J.: Ubiquitous computing environments and its usage access control. In: Proceedings of the 1st International Conference on Scalable Information Systems, pp. 6–es (2006)
Wang, J., Yang, A., Zhou, D., Lin, N., Wang, Z., Huang, W., Chen, B.: Simplifying aspect-sentiment quadruple prediction with cartesian product operation. In: Huang, D.S., Premaratne, P., Jin, B., Qu, B., Jo, K.H., Hussain, A. (eds.) ICIC 2023. LNCS, vol. 14089, pp. 707–719. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-4752-2_58
Wang, J., Sun, C., Li, S., Liu, X., Si, L., Zhang, M., Zhou, G.: Aspect sentiment classification towards question-answering with reinforced bidirectional attention network. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3548–3557 (2019)
Wang, M., Han, S., Chen, G., Yin, J., Cao, J.: Blockchain-empowered resource allocation and data security for efficient vehicular edge computing. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds.) WISE 2023. LNCS, vol. 14306, pp. 205–219. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7254-8_16
Wang, Z., Xia, R., Yu, J.: Unifiedabsa: A unified ABSA framework based on multi-task instruction tuning (2022)
Yang, Y., Zhang, Y., Xu, R.: Enhancing generative aspect-based sentiment analysis with relation-level supervision and prompt. In: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 10526–10530. IEEE (2024)
Yin, J., Chen, G., Hong, W., Wang, H., Cao, J., Miao, Y.: Empowering vulnerability prioritization: a heterogeneous graph-driven framework for exploitability prediction. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds.) WISE 2023. LNCS, vol. 14306, pp. 289–299. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7254-8_23
Yin, J., Hong, W., Wang, H., Cao, J., Miao, Y., Zhang, Y.: A compact vulnerability knowledge graph for risk assessment. ACM Trans. Knowl. Discov. Data 18(8), 1–17 (2024)
Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. In: World Wide Web, pp. 1–23 (2022)
You, M., Ge, Y.F., Wang, K., Wang, H., Cao, J., Kambourakis, G.: TLEF: two-layer evolutionary framework for t-closeness anonymization. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds.) WISE 2023. LNCS, vol. 14306, pp. 235–244. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7254-8_18
You, M., Yin, J., Wang, H., Cao, J., Miao, Y.: A minority class boosted framework for adaptive access control decision-making. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds.) WISE 2021. LNCS, vol. 13080, pp. 143–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90888-1_12
Zhang, H., Cheah, Y.N., Alyasiri, O.M., An, J.: Exploring aspect-based sentiment quadruple extraction with implicit aspects, opinions, and ChatGPT: a comprehensive survey. Artif. Intell. Rev. 57(2), 17 (2024)
Zhang, H., et al.: Query-induced multi-task decomposition and enhanced learning for aspect-based sentiment quadruple prediction. Eng. Appl. Artif. Intell. 133, 108609 (2024)
Zhang, W., Deng, Y., Li, X., Yuan, Y., Bing, L., Lam, W.: Aspect sentiment quad prediction as paraphrase generation. arXiv preprint arXiv:2110.00796 (2021)
Zhang, W., Zhang, X., Cui, S., Huang, K., Wang, X., Liu, T.: Adaptive data augmentation for aspect sentiment quad prediction. arXiv preprint arXiv:2401.06394 (2024)
Zhou, J., Yang, H., He, Y., Mou, H., Yang, J.: A unified one-step solution for aspect sentiment quad prediction. In: Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, pp. 12249–12265. Association for Computational Linguistics (2023)
Zhu, L., Bao, Y., Xu, M., Li, J., Zhu, Z., Kong, X.: Aspect sentiment quadruple extraction based on the sentence-guided grid tagging scheme. World Wide Web 26(5), 3303–3320 (2023)
Acknowledgments
We are deeply grateful to the Saudi Arabian Cultural Mission in Australia and the Ministry of Education (Saudi Arabia) for their dedicated support and financial assistance, which have been instrumental in making this work possible.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Alharbi, M., Yin, J., Miao, Y., Cao, J. (2025). From Data to Insights: Constructing and Evaluating a Hospitality Dataset for Quadruple Aspect-Based Sentiment Analysis. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15436. Springer, Singapore. https://doi.org/10.1007/978-981-96-0579-8_8
Download citation
DOI: https://doi.org/10.1007/978-981-96-0579-8_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0578-1
Online ISBN: 978-981-96-0579-8
eBook Packages: Computer ScienceComputer Science (R0)