Abstract
After all these years of rapid development, as the economic level of our country has risen, new challenges have arisen for productive work in a polluted environment. Due to hazy weather, the quality of images captured by traffic monitoring devices could be degraded, affecting the accuracy of judging vehicle dynamics. In this background, we introduce MSTBNet, a fresh network design utilizing multi-scale topological residual blocks (MSTBs) to convey information across both depth and width dimensions while effectively identifying network nodes to enhance learning. The network can capture both local and global features through the transfer of information between neighbouring and distant nodes and the feedback mechanism of the network implementation. Also, due to the lightweight of the network model, it is well suited for real-time operation of target detection. Experimental results show that our proposed algorithm has superior dehazing performance compared to existing methods, which improves the accuracy of target detection and identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682 (2016)
Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: 2017 IEEE International Conference on Computational Photography (ICCP), pp. 1–9 (2017)
Berman, D., Treibitz, T., Avidan, S.: Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 720–734 (2020)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25, 5187–5198 (2016)
Cantor, A.: Optics of the atmosphere-scattering by molecules and particles. IEEE J. Quantum Electron. 14(9), 698–699 (1978)
Chen, Y., Li, Y., Wang, Y., Mi, Z., Wang, Y., Fu, X.: Robust polarization-based underwater image enhancement method using anchor brightness adaptation. Opt. Lasers Eng. 169, 107737 (2023)
Chen, Z., Wang, Y., Yang, Y., Liu, D.: PSD: principled synthetic-to-real dehazing guided by physical priors. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7176–7185 (2021)
Deng, J., Zhu, J., Li, H., Zhang, X., Guo, F., Hou, X.: Real-time underwater polarization imaging without relying on background. Opt. Lasers Eng. 169, 107721 (2023)
Deng, Q., Huang, Z., Tsai, C.-C., Lin, C.-W.: HardGAN: a haze-aware representation distillation GAN for single image dehazing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 722–738. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_43
Ding, X., Wang, Y., Fu, X.: Multi-polarization fusion generative adversarial networks for clear underwater imaging. Opt. Lasers Eng. 152, 106971 (2022)
Dong, H., et al.: Multi-scale boosted dehazing network with dense feature fusion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2154–2164 (2020)
Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34(1), 1–14 (2015)
Fu, X., Liang, Z., Ding, X., Yu, X., Wang, Y.: Image descattering and absorption compensation in underwater polarimetric imaging. Opt. Lasers Eng. 132, 106115 (2020)
Gao, C., et al.: Underwater polarization de-scattering imaging based on orthogonal polarization decomposition with low-pass filtering. Opt. Lasers Eng. 170, 107796 (2023)
Guo, T., Li, X., Cherukuri, V., Monga, V.: Dense scene information estimation network for dehazing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2122–2130 (2019)
Han, P., Liu, F., Wei, Y., Shao, X.: Optical correlation assists to enhance underwater polarization imaging performance. Opt. Lasers Eng. 134, 106256 (2020)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963 (2009)
Hu, H., Zhang, Y., Li, X., Lin, Y., Cheng, Z., Liu, T.: Polarimetric underwater image recovery via deep learning. Opt. Lasers Eng. 133, 106152 (2020)
Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics yolov8 (2023). https://github.com/ultralytics/ultralytics
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lee, B.U., Lee, K., Oh, J., Kweon, I.S.: CNN-based simultaneous dehazing and depth estimation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9722–9728 (2020)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: IEEE International Conference on Computer Vision, pp. 4780–4788 (2017)
Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28, 492–505 (2017)
Li, H., Gao, J., Zhang, Y., Xie, M., Yu, Z.: Haze transfer and feature aggregation network for real-world single image dehazing. Knowl.-Based Syst. 251, 109309 (2022)
Li, Y., Ruan, R., Mi, Z., Shen, X., Gao, T., Fu, X.: An underwater image restoration based on global polarization effects of underwater scene. Opt. Lasers Eng. 165, 107550 (2023)
Liu, T., et al.: Polarimetric underwater image recovery for color image with crosstalk compensation. Opt. Lasers Eng. 124, 105833 (2020)
Liu, Y., et al.: From synthetic to real: image dehazing collaborating with unlabeled real data. In: Proceedings of the 29th ACM International Conference on Multimedia (2021)
Lu, Y., Ren, W., Su, Y., Zhang, Z., Zhang, J., Tian, J.: Polarization image demosaicking based on homogeneity space. Opt. Lasers Eng. 178, 108179 (2024)
Mishra, A.K., Kumar, M., Choudhry, M.S.: Fusion of multiscale gradient domain enhancement and gamma correction for underwater image/video enhancement and restoration. Opt. Lasers Eng. 178, 108154 (2024)
Narasimhan, S., Nayar, S.: Chromatic framework for vision in bad weather. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 598–605 (2000)
Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vision 48(3), 233–254 (2002)
Pang, Y., Nie, J., Xie, J., Han, J., Li, X.: BidNet: binocular image dehazing without explicit disparity estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5930–5939 (2020)
Qi, P., et al.: U2R-pGAN: unpaired underwater-image recovery with polarimetric generative adversarial network. Opt. Lasers Eng. 157, 107112 (2022)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing. IEEE Trans. Image Process. 32, 1927–1941 (2023)
Su, Y., Lu, Y., Liu, J., Zhang, Z., Tian, J.: Polarization image demosaicking with directional cubic residual interpolation. In: 2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 657–661 (2023)
Su, Y., Zhang, Z., Lu, Y., Liu, S., Tang, Y., Tian, J.: Underwater descattering with polarization line constraint. Opt. Lasers Eng. 179, 108265 (2024)
Sulami, M., Glatzer, I., Fattal, R., Werman, M.: Automatic recovery of the atmospheric light in hazy images. In: 2014 IEEE International Conference on Computational Photography (ICCP), pp. 1–11 (2014)
Wang, J., et al.: Periodic integration-based polarization differential imaging for underwater image restoration. Opt. Lasers Eng. 149, 106785 (2022)
Wang, X., et al.: Compensation atmospheric scattering model and two-branch network for single image dehazing. IEEE Trans. Emerg. Top. Comput. Intell. 8, 1–17 (2024)
Wu, H., et al.: Contrastive learning for compact single image dehazing. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10546–10555 (2021)
Wu, H., et al.: Real-time generation of underwater de-backscattering videos using the arrayed orthogonal polarization light source and active polarization imaging. Opt. Lasers Eng. 174, 107963 (2024)
Yang, K., et al.: High-quality 3D shape recovery from scattering scenario via deep polarization neural networks. Opt. Lasers Eng. 173, 107934 (2024)
Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, April 2018
Yang, Y., Wang, C., Liu, R., Zhang, L., Guo, X., Tao, D.: Self-augmented unpaired image dehazing via density and depth decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2027–2036 (2022)
Zhao, Y., He, W., Ren, H., Li, Y., Fu, Y.: Polarization descattering imaging through turbid water without prior knowledge. Opt. Lasers Eng. 148, 106777 (2022)
Zheng, Z., et al.: Ultra-high-definition image dehazing via multi-guided bilateral learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 16180–16189 (2021)
Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)
Zhu, Z., Qiu, H., Hu, Q., Ren, K., Zhou, L., Zhu, T.: Underwater 3d reconstruction based on double N-step orthogonal polarization state phase shift strategy. Opt. Lasers Eng. 178, 108161 (2024)
Acknowledgements
This work was supported in part by the Natural Science Foundation of China under Grant U2013210 and Grant 62105372; in part by the LiaoNing Science Fund for Distinguished Young Scholars under Grant 2023JH6/100500005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ge, Y., Lu, Y., Lin, S., Su, Y., Yang, Z., Tian, J. (2025). Multi-Scale Topology of Residual Network for Haze Removal. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15202. Springer, Singapore. https://doi.org/10.1007/978-981-96-0774-7_5
Download citation
DOI: https://doi.org/10.1007/978-981-96-0774-7_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0773-0
Online ISBN: 978-981-96-0774-7
eBook Packages: Computer ScienceComputer Science (R0)