Skip to main content

Distributed Compensation of Robot Processing Errors Based on Errors Sensitivity

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15205))

Included in the following conference series:

  • 26 Accesses

Abstract

Robotic milling has become another important means of advanced manufacturing technology. It has better manufacturing flexibility than machine tooling. However, the issue of low accuracy in robot machining represents a significant obstacle to the advancement of robot milling technology. Compensation of robot errors by correcting the robot joint angles can effectively improve the accuracy of robotic milling. However, changes in the angle of specific joints can lead to larger regeneration errors reducing the compensation effect. To address the above issues, a distributed compensation method for robot processing errors based on error sensitivity is proposed in this paper. The contribution of each joint to the six directions pose errors is obtained through errors sensitivity The contribution of each joint to the six directions pose errors is obtained through errors sensitivity analysis. The error compensation in the joint space is performed on some of the joints with low contribution, and the remaining part of the errors is compensated on the workpiece platform. This reduces the regeneration error and improves the compensation effect. The mean processing errors of the machined workpiece is 0.225mm, which is 19.38% lower than the conventional compensation method, as verified by the milling experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ji, W., Wang, L.: Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 103(1–4), 1239–1255 (2019). https://doi.org/10.1007/s00170-019-03403-z

    Article  MATH  Google Scholar 

  2. Guo, Q., et al.: Progress, challenges and trends on vision sensing technologies in automatic/intelligent robotic welding: state-of-the-art review. Robot. Comput. Integr. Manuf. 89, 102767 (2024). https://doi.org/10.1016/j.rcim.2024.102767

    Article  MATH  Google Scholar 

  3. Zhu, Z., et al.: High precision and efficiency robotic milling of complex parts: challenges, approaches and trends. Chin. J. Aeronaut. 35(2), 22–46 (2022). https://doi.org/10.1016/j.cja.2020.12.030

    Article  MATH  Google Scholar 

  4. Wang, W., Guo, Q., Yang, Z., Jiang, Y., Xu, J.: A state-of-the-art review on robotic milling of complex parts with high efficiency and precision. Robot. Comput. Integr. Manuf. 79, 102436 (2023). https://doi.org/10.1016/j.rcim.2022.102436

    Article  MATH  Google Scholar 

  5. Abele, E., Weigold, M., Rothenbucher, S.: Modeling and identification of an industrial robot for machining applications. CIRP Ann-Manuf. Techn. 56(1), 387–390 (2007). https://doi.org/10.1016/j.cirp.2007.05.090

    Article  Google Scholar 

  6. Song, Y., et al.: Industrial serial robot calibration considering geometric and deformation errors. Robot. Comput. Integr. Manuf. 76, 102328 (2022). https://doi.org/10.1016/j.rcim.2022.102328

    Article  MATH  Google Scholar 

  7. Huang, C., Xie, F., Liu, X., Meng, Q.: Error modeling and sensitivity analysis of a parallel robot with R-(SS)2 branches. Int. J. Intell. Robot. 4(4), 416–428 (2020). https://doi.org/10.1007/s41315-020-00147-y

    Article  MATH  Google Scholar 

  8. Chen, Y., Chen, S., Gao, X., Xu, G., Ling, Z.: parameter calibration of dimensionality reduction DH error model based on robot task space. In: 5th International Conference on Control, Automation and Robotics, PP. 128–132. IEEE, Beijing (2019). https://doi.org/10.1109/iccar.2019.8813390

  9. Shen, H., Meng, Q., Li, J., Deng, J., Wu, G.: Kinematic sensitivity, parameter identification and calibration of a non-fully symmetric parallel Delta robot. Mech. Mach. Theory 161, 104311 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104311

    Article  MATH  Google Scholar 

  10. Cao, S., Cheng, Q., Guo, Y., Zhu, W., Wang, H., Ke, Y.: Pose error compensation based on joint space division for 6-DOF robot manipulators. Precis. Eng. 74, 195–204 (2022). https://doi.org/10.1016/j.precisioneng.2021.11.010

    Article  MATH  Google Scholar 

  11. Zhang, T., Peng, F., Tang, X., Yan, R., Deng, R.: CME-EPC: a coarse-mechanism embedded error prediction and compensation framework for robot multi-condition tasks. Robot. Comput. Integr. Manuf. 86, 102675 (2024). https://doi.org/10.1016/j.rcim.2023.102675

    Article  Google Scholar 

  12. Zhu, D., et al.: Robotic grinding of complex components: a step towards efficient and intelligent machining challenges, solutions, and applications. Robot. Comput. Integr. Manuf. 65, 101908 (2020). https://doi.org/10.1016/j.rcim.2019.101908

    Article  MATH  Google Scholar 

  13. Lin, Y., Zhao, H., Ding, H.: Real-time path correction of industrial robots in machining of large-scale components based on model and data hybrid drive. Robot. Comput. Integr. Manuf. 79, 10244 (2023). https://doi.org/10.1016/j.rcim.2022.102447

    Article  MATH  Google Scholar 

  14. Ibaraki, S., et al.: Novel six-axis robot kinematic model with axis-to-axis crosstalk. CIRP Ann-Manuf. Techn. 70(1), 411–414 (2021). https://doi.org/10.1016/j.cirp.2021.04.079

    Article  MATH  Google Scholar 

  15. Li, B., Tian, W., Zhang, C., Hua, F., Cui, G., Li, Y.: Positioning error compensation of an industrial robot using neural networks and experimental study. Chin. J. Aeronaut. 35(2), 346–360 (2022). https://doi.org/10.1016/j.cja.2021.03.027

    Article  MATH  Google Scholar 

  16. Zhao, H., Li, X., Ge, K., Han, D.: A contour error definition, estimation approach and control structure for six-dimensional robotic machining tasks. Robot. Comput. Integr. Manuf. 73, 102235 (2022). https://doi.org/10.1016/j.rcim.2021.102235

    Article  Google Scholar 

  17. Zhang, T., Peng, F., Tang, X., Yan, R., Zhang, C., Deng, R.: An active semi-supervised transfer learning method for robot pose error prediction and compensation. Eng. Appl. Artif. Intel. 128, 107476 (2024). https://doi.org/10.1016/j.engappai.2023.107476

    Article  MATH  Google Scholar 

  18. Bruno, S., Lorenzo, S., Luigi, V., Giuseppe, O.: Robotics: modelling, planning and control. Springer, Berlin (2010)

    MATH  Google Scholar 

  19. Tang, Y., Reed, P., Werkhoven, K., Wagener, T.: Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resour. Res. 43(6), W06415 (2007). https://doi.org/10.1029/2006WR005813

    Article  Google Scholar 

  20. Lin, J., Ye, C., Yang, J., Zhao, H., Ding, H., Luo, M.: Contour error-based optimization of the end-effector pose of a 6 degree-of-freedom serial robot in milling operation. Robot. Comput. Integr. Manuf. 73, 102257 (2022). https://doi.org/10.1016/j.rcim.2021.102257

    Article  Google Scholar 

  21. Zhang, T., Peng, F., Tang, X., Yan, R., Deng, R., Yuan, J.: Quantification of uncertainty in robot pose errors and calibration of reliable compensation values. Robot. Comput. Integr. Manuf. 89, 102765 (2024). https://doi.org/10.1016/j.rcim.2024.102765

    Article  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the National Key Research and Development Program of China (Grant No. 2023YFB4705100), the National Natural Science Foundation of China (Grant No. 52175463) and the Fundamental Research Funds for the Central Universities (Grant No.YCJJ20241201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, R., Zhang, T., Peng, F., Yan, R., Tang, X., Yuan, J. (2025). Distributed Compensation of Robot Processing Errors Based on Errors Sensitivity. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15205. Springer, Singapore. https://doi.org/10.1007/978-981-96-0777-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0777-8_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0776-1

  • Online ISBN: 978-981-96-0777-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics