Skip to main content

Control of a Lower Limb Exoskeleton Robot Based on Adaptive Oscillator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15205))

Included in the following conference series:

  • 66 Accesses

Abstract

Lower limb exoskeletons have been shown to have the potential to help patients rehabilitate and improve their walking ability. This paper propose a lightweight rigid-flexible coupled exoskeleton robot and design a gait trajectory planning algorithm for lower limb exoskeleton based on adaptive oscillator and deep neural network. The main body of the exoskeleton robot is made of lightweight materials with an overall mass of only 7 kg. At the same time, the knee motor is moved up and placed between the hip and knee joints, and the knee motion is driven by the Bowden cable, which reduces the rotational inertia of the knee joint and improves the comfort of the wearer. In the control method, the starting point of each gait cycle is determined by gait feature event judgment through deep neural network. Real-time estimation of gait phase is performed by adaptive oscillator for exoskeleton trajectory planning. Meanwhile, level ground walking experiments of normal human body and clinical verification experiments of patients were carried out, and the experimental results demonstrated the effectiveness of lower limb exoskeleton robot-assisted rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawicki, G.S., Beck, O.N., Kang, I., et al.: The exoskeleton expansion: improving walking and running economy. J. NeuroEngineering Rehabil. 17, 25 (2020)

    Article  MATH  Google Scholar 

  2. Ajoudani, A., et al.: Smart collaborative systems for enabling flexible and ergonomic work practices [industry activities]. IEEE Robot. Autom. Mag. 27(2), 169–176 (2020)

    Article  Google Scholar 

  3. Gardner, A.D., Potgieter, J., Noble, F.K.: A review of commercially available exoskeletons’ capabilities. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–5. Auckland, New Zealand (2017)

    Google Scholar 

  4. Tsukahara, A., Hasegawa, Y., Sankai, Y.: Standing-up motion support for paraplegic patient with Robot Suit HAL. In: 2009 IEEE International Conference on Rehabilitation Robotics, pp. 211–217. Kyoto, Japan (2009)

    Google Scholar 

  5. Huang, R., Cheng, H., Guo, H., Chen, Q., Lin, X.: Hierarchical interactive learning for a human-powered augmentation lower exoskeleton. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 257–263. Stockholm (2016)

    Google Scholar 

  6. Li, Y.-A., et al.: Exoskeleton-assisted sit-to-stand training improves lower-limb function through modifications of muscle synergies in subacute stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 3095–3105 (2023)

    Article  MATH  Google Scholar 

  7. Zhang, Y., Lu, M.: A review of recent advancements in soft and flexible robots for medical applications. Int. J. Med. Robot. 16(3), e2096 (2020)

    Article  MATH  Google Scholar 

  8. Qian, W., et al.: CURER: a lightweight cable-driven compliant upper limb rehabilitation exoskeleton robot. IEEE/ASME Trans. Mechatron. 28(3), 1730–1741 (2022)

    Google Scholar 

  9. Yu, H., Huang, S., Chen, G., Pan, Y., Guo, Z.: Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Rob. 31(5), 1089–1100 (2015)

    Article  MATH  Google Scholar 

  10. Sun, J., Guo, Z., Zhang, Y., Xiao, X., Tan, J.: A novel design of serial variable stiffness actuator based on an archimedean spiral relocation mechanism. IEEE/ASME Trans. Mechatron. 23(5), 2121–2131 (2018)

    Article  MATH  Google Scholar 

  11. Chen, B., et al.: Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 5, 26−37 (2015)

    Google Scholar 

  12. Yan, T., Cempini, M., Oddo, C.M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136 (2015)

    Article  Google Scholar 

  13. Li, W.-Z., Cao, G.-Z., Zhu, A.-B.: Review on control strategies for lower limb rehabilitation exoskeletons. IEEE Access 9, 123040–123060 (2021)

    Article  MATH  Google Scholar 

  14. Griffin, R., et al.: Stepping forward with exoskeletons: team IHMC?s design and approach in the 2016 cybathlon. IEEE Robot. Autom. Mag. 24(4), 66–74 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huo, W., Mohammed, S., Amirat, Y.: Impedance reduction control of a knee joint human-exoskeleton system. IEEE Trans. Control Syst. Technol. 27(6), 2541–2556 (2019)

    Article  MATH  Google Scholar 

  16. Yan, T., Parri, A., Ruiz Garate, V., et al.: An oscillator-based smooth real-time estimate of gait phase for wearable robotics. Auton. Robot. 41, 759–774 (2017)

    Google Scholar 

  17. Ma, X., Long, X., Yan, Z., Wang, C., Guo, Z., Wu, X.: Real-time active control of a lower limb exoskeleton based on sEMG. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China (2019)

    Google Scholar 

  18. Li, W., et al.: The human–machine interface design based on sEMG and motor imagery EEG for lower limb exoskeleton assistance system. IEEE Trans. Instrum. Meas. 73, 1–14, Art no. 6502914 (2024)

    Google Scholar 

  19. Ronsse, R., De Rossi, S.M.M., Vitiello, N., Lenzi, T., Carrozza, M.C., Ijspeert, A.J.: Real-time estimate of velocity and acceleration of quasi-periodic signals using adaptive oscillators. IEEE Trans. Rob. 29(3), 783–791 (2013)

    Article  Google Scholar 

  20. Tricomi, E., et al.: Underactuated soft hip exosuit based on adaptive oscillators to assist human locomotion. IEEE Robot. Autom. Lett. 7(2), 936–943 (2022)

    Article  MATH  Google Scholar 

  21. Xue, T., Wang, Z., Zhang, T., Zhang, M.: Adaptive oscillator-based robust control for flexible hip assistive exoskeleton. IEEE Robot. Autom. Lett. 4(4), 3318–3323 (2019)

    Article  MATH  Google Scholar 

  22. Kang, I., Molinaro, D.D., Duggal, S., Chen, Y., Kunapuli, P., Young, A.J.: Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion. IEEE Robot. Autom. Lett. 6(2), 3491–3497 (2021)

    Article  Google Scholar 

  23. Kang, I., Kunapuli, P., Young, A.J.: Real-time neural network-based gait phase estimation using a robotic hip exoskeleton. IEEE Trans. Med. Robot. Bionics 2(1), 28–37 (2020)

    Article  Google Scholar 

  24. Liu, S., Zhou, Z., Lu, L., Xiao, X., Guo, Z.: Gait phase detection based on time sequence adapting to various walking posture and frequency. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol. 13457. Springer, Cham (2022)

    Google Scholar 

  25. Yi, S., Fu, Z., Yang, X., Liao, Y., Guo, Z.: Design and modeling of a lightweight lower limb exoskeleton with compliant knee joints. In: 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1–6. Koh Samui, Thailand (2023)

    Google Scholar 

Download references

Acknowledgments

Research supported by the National Key Research and Development Program of China (No. 2023YFE0202100), the National Natural Science Foundation of China (Grant No. 51605339), and the Science and Technology Innovation Special Program of Hubei Province (Grant NO. 2021BCA124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Z., Yang, X., Yi, S., Qiu, C., Qi, B., Guo, Z. (2025). Control of a Lower Limb Exoskeleton Robot Based on Adaptive Oscillator. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15205. Springer, Singapore. https://doi.org/10.1007/978-981-96-0777-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0777-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0776-1

  • Online ISBN: 978-981-96-0777-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics