Abstract
The cable-driven hyper-redundant continuum robot possesses a highly slender and flexible body, rendering it particularly well-suited for operations in confined spaces. However, developing mathematical models and control strategies for ensuring the safe traversal of hyper-redundant continuum robots through such narrow and confined spaces poses significant challenges. This paper presents a cable-driven hyper-redundant continuum robot intended for diverse applications such as aviation engines, aircraft fuel tanks, and pipelines in nuclear power plants. Firstly, a cable-driven hyper-redundant continuum robot equipped with internal angle sensors was developed. Simultaneously, a kinematic model for the cable-driven hyper-redundant continuum robot was established. Subsequently, utilizing the derived kinematic equations and signals obtained from angle sensors, we further deduced the velocity-level kinematics for the cable-driven hyper-redundant continuum robot. Furthermore, we proposed methods for pose perception and closed-loop control suitable for the cable-driven hyper-redundant continuum robot. Finally, experimental verification is performed to demonstrate the effectiveness and accuracy of the control method. The results reveal a positioning error of the end-effector within 1.5 mm, highlighting the outstanding performance of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Xu, W., Liu, T., Li, Y.: Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 23(4), 1693–1704 (2018)
Buckingham, R., Graham, A.: Nuclear snake-arm robots. Industr. Robot: Int. J. 39(1), 6–11 (2012)
Peng, J., Xu, W., Liu, T., Yuan, H., Liang, B.: End-effector pose and arm-shape synchronous planning methods of a hyper-redundant manipulator for spacecraft repairing. Mech. Mach. Theory 155, 104062 (2021)
Wolf, A., et al.: A mobile hyper redundant mechanism for search and rescue tasks. In:Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), pp. 2889–2895. IEEE, Las Vegas, Nevada, USA (2003)
Rox, M., et al.: Toward continuum robot tentacles for lung interventions: exploring folding support disks. IEEE Robot. Autom. Lett. 8(6), 3494–3501 (2023)
Yip, M.C., Camarillo, D.B.: Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans. Robot. 30(4), 880–889 (2014)
Yip, M.C., Camarillo, D.B.: Model-less hybrid position/force control: a minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robot. Autom. Lett. 1(2), 844–851 (2016)
Ba, W., Dong, X., Mohammad, A., Wang, M., Axinte, D., Norton, A.: Design and validation of a novel fuzzy-logic-based static feedback controller for tendon-driven continuum robots. IEEE/ASME Trans. Mechatron. 26(6), 3010–3021 (2021)
Li, M., Kang, R., Branson, D.T., Dai, J.S.: Model-free control for continuum robots based on an adaptive Kalman filter. IEEE/ASME Trans. Mechatron. 23(1), 286–297 (2018)
Wu, Y.-Y., Tan, N.: Model-less feedback control for soft manipulators with Jacobian adaptation. In: 2020 International Symposium on Autonomous Systems (ISAS), pp. 217–222.IEEE, Guangzhou, China (2020)
Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., Laschi, C.: Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space. Bioinspir. Biomim. 10(3), 035006 (2015)
Giorelli, M., Renda, F., Ferri, G., Laschi, C.: A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5033–5039. IEEE,Tokyo (2013)
Goharimanesh, M., Mehrkish, A., Janabi-Sharifi, F.: A fuzzy reinforcement learning approach for continuum robot control. J. Intell. Robot. Syst. 100(3–4), 809–826 (2020)
Tan, N., Yu, P., Zhang, X., Wang, T.: Model-free motion control of continuum robots based on a zeroing neurodynamic approach. Neural Netw. 133, 21–31 (2021)
Tan, N., Yu, P., Ni, F., Sun, Z.: Trajectory tracking of soft continuum robots with unknown models based on varying parameter recurrent neural networks. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.1035–1041. IEEE, Melbourne, Australia (2021)
Xiang, P., et al.: Learning-based high-precision force estimation and compliant control for small-scale continuum robot. IEEE Trans. Autom. Sci. Eng. 1–13 (2024)
Chitrakaran, V.K., Behal, A., Dawson, D.M., Walker, I.D.: Setpoint regulation of continuum robots using a fixed camera. In: Proceedings of the 2004 American Control Conference, vol. 2, pp. 1504–1509. IEEE,Boston, MA, USA (2004)
Bajo, A., Goldman, R.E., Simaan, N.: Configuration and joint feedback for enhanced performance of multi-segment continuum robots. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2905–2912. IEEE,Shanghai, China (2011)
Goldman, R.E., Bajo, A., Simaan, N.: Compliant motion control for continuum robots with intrinsic actuation sensing. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1126–1132,IEEE, Shanghai, China (2011)
Bajo, A., Simaan, N.: Hybrid motion/force control of multi-backbone continuum robots. Int. J. Robot. Res. 35(4), 422–434 (2016)
Goldman, R.E., Bajo, A., Simaan, N.: Compliant motion control for multisegment continuum robots with actuation force sensing. IEEE Trans. Robot. 30(4), 890–902 (2014)
Huang, X., Zou, J., Gu, G.: Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Trans. Mechatron. 26(6), 3175–3185 (2021)
Li, M., Kang, R., Geng, S., Guglielmino, E.: Design and control of a tendon-driven continuum robot. Trans. Inst. Meas. Control 40(11), 3263–3272 (2018)
Wang, Z., et al.: Hybrid adaptive control strategy for continuum surgical robot under external load. IEEE Robot. Autom. Lett. 6(2), 1407–1414 (2021)
Gravagne, I.A., Walker, I.D.: Uniform regulation of a multi-section continuum manipulator. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp. 1519–1524. IEEE,Washington, DC, USA (2002)
Alqumsan, A.A., Khoo, S., Norton, M.: Robust control of continuum robots using Cosserat rod theory. Mech. Mach. Theory 131, 48–61 (2019)
Acknowledgment
This work was supported by the National Natural Science Foundation of China (No. 52105117 and No. 52375125).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xue, C., Yang, D., Yang, L., Sun, Y. (2025). Hyper-redundant Continuum Robot: System Development and Feedback Control. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15207. Springer, Singapore. https://doi.org/10.1007/978-981-96-0780-8_32
Download citation
DOI: https://doi.org/10.1007/978-981-96-0780-8_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0779-2
Online ISBN: 978-981-96-0780-8
eBook Packages: Computer ScienceComputer Science (R0)