Skip to main content

Hyper-redundant Continuum Robot: System Development and Feedback Control

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15207))

Included in the following conference series:

  • 20 Accesses

Abstract

The cable-driven hyper-redundant continuum robot possesses a highly slender and flexible body, rendering it particularly well-suited for operations in confined spaces. However, developing mathematical models and control strategies for ensuring the safe traversal of hyper-redundant continuum robots through such narrow and confined spaces poses significant challenges. This paper presents a cable-driven hyper-redundant continuum robot intended for diverse applications such as aviation engines, aircraft fuel tanks, and pipelines in nuclear power plants. Firstly, a cable-driven hyper-redundant continuum robot equipped with internal angle sensors was developed. Simultaneously, a kinematic model for the cable-driven hyper-redundant continuum robot was established. Subsequently, utilizing the derived kinematic equations and signals obtained from angle sensors, we further deduced the velocity-level kinematics for the cable-driven hyper-redundant continuum robot. Furthermore, we proposed methods for pose perception and closed-loop control suitable for the cable-driven hyper-redundant continuum robot. Finally, experimental verification is performed to demonstrate the effectiveness and accuracy of the control method. The results reveal a positioning error of the end-effector within 1.5 mm, highlighting the outstanding performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, W., Liu, T., Li, Y.: Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 23(4), 1693–1704 (2018)

    Article  MATH  Google Scholar 

  2. Buckingham, R., Graham, A.: Nuclear snake-arm robots. Industr. Robot: Int. J. 39(1), 6–11 (2012)

    Article  MATH  Google Scholar 

  3. Peng, J., Xu, W., Liu, T., Yuan, H., Liang, B.: End-effector pose and arm-shape synchronous planning methods of a hyper-redundant manipulator for spacecraft repairing. Mech. Mach. Theory 155, 104062 (2021)

    Article  Google Scholar 

  4. Wolf, A., et al.: A mobile hyper redundant mechanism for search and rescue tasks. In:Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), pp. 2889–2895. IEEE, Las Vegas, Nevada, USA (2003)

    Google Scholar 

  5. Rox, M., et al.: Toward continuum robot tentacles for lung interventions: exploring folding support disks. IEEE Robot. Autom. Lett. 8(6), 3494–3501 (2023)

    Article  MATH  Google Scholar 

  6. Yip, M.C., Camarillo, D.B.: Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans. Robot. 30(4), 880–889 (2014)

    Article  MATH  Google Scholar 

  7. Yip, M.C., Camarillo, D.B.: Model-less hybrid position/force control: a minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robot. Autom. Lett. 1(2), 844–851 (2016)

    Article  Google Scholar 

  8. Ba, W., Dong, X., Mohammad, A., Wang, M., Axinte, D., Norton, A.: Design and validation of a novel fuzzy-logic-based static feedback controller for tendon-driven continuum robots. IEEE/ASME Trans. Mechatron. 26(6), 3010–3021 (2021)

    Article  MATH  Google Scholar 

  9. Li, M., Kang, R., Branson, D.T., Dai, J.S.: Model-free control for continuum robots based on an adaptive Kalman filter. IEEE/ASME Trans. Mechatron. 23(1), 286–297 (2018)

    Article  MATH  Google Scholar 

  10. Wu, Y.-Y., Tan, N.: Model-less feedback control for soft manipulators with Jacobian adaptation. In: 2020 International Symposium on Autonomous Systems (ISAS), pp. 217–222.IEEE, Guangzhou, China (2020)

    Google Scholar 

  11. Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., Laschi, C.: Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space. Bioinspir. Biomim. 10(3), 035006 (2015)

    Google Scholar 

  12. Giorelli, M., Renda, F., Ferri, G., Laschi, C.: A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5033–5039. IEEE,Tokyo (2013)

    Google Scholar 

  13. Goharimanesh, M., Mehrkish, A., Janabi-Sharifi, F.: A fuzzy reinforcement learning approach for continuum robot control. J. Intell. Robot. Syst. 100(3–4), 809–826 (2020)

    Article  MATH  Google Scholar 

  14. Tan, N., Yu, P., Zhang, X., Wang, T.: Model-free motion control of continuum robots based on a zeroing neurodynamic approach. Neural Netw. 133, 21–31 (2021)

    Article  MATH  Google Scholar 

  15. Tan, N., Yu, P., Ni, F., Sun, Z.: Trajectory tracking of soft continuum robots with unknown models based on varying parameter recurrent neural networks. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.1035–1041. IEEE, Melbourne, Australia (2021)

    Google Scholar 

  16. Xiang, P., et al.: Learning-based high-precision force estimation and compliant control for small-scale continuum robot. IEEE Trans. Autom. Sci. Eng. 1–13 (2024)

    Google Scholar 

  17. Chitrakaran, V.K., Behal, A., Dawson, D.M., Walker, I.D.: Setpoint regulation of continuum robots using a fixed camera. In: Proceedings of the 2004 American Control Conference, vol. 2, pp. 1504–1509. IEEE,Boston, MA, USA (2004)

    Google Scholar 

  18. Bajo, A., Goldman, R.E., Simaan, N.: Configuration and joint feedback for enhanced performance of multi-segment continuum robots. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2905–2912. IEEE,Shanghai, China (2011)

    Google Scholar 

  19. Goldman, R.E., Bajo, A., Simaan, N.: Compliant motion control for continuum robots with intrinsic actuation sensing. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1126–1132,IEEE, Shanghai, China (2011)

    Google Scholar 

  20. Bajo, A., Simaan, N.: Hybrid motion/force control of multi-backbone continuum robots. Int. J. Robot. Res. 35(4), 422–434 (2016)

    Article  MATH  Google Scholar 

  21. Goldman, R.E., Bajo, A., Simaan, N.: Compliant motion control for multisegment continuum robots with actuation force sensing. IEEE Trans. Robot. 30(4), 890–902 (2014)

    Article  MATH  Google Scholar 

  22. Huang, X., Zou, J., Gu, G.: Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Trans. Mechatron. 26(6), 3175–3185 (2021)

    Article  MATH  Google Scholar 

  23. Li, M., Kang, R., Geng, S., Guglielmino, E.: Design and control of a tendon-driven continuum robot. Trans. Inst. Meas. Control 40(11), 3263–3272 (2018)

    Article  MATH  Google Scholar 

  24. Wang, Z., et al.: Hybrid adaptive control strategy for continuum surgical robot under external load. IEEE Robot. Autom. Lett. 6(2), 1407–1414 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gravagne, I.A., Walker, I.D.: Uniform regulation of a multi-section continuum manipulator. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp. 1519–1524. IEEE,Washington, DC, USA (2002)

    Google Scholar 

  26. Alqumsan, A.A., Khoo, S., Norton, M.: Robust control of continuum robots using Cosserat rod theory. Mech. Mach. Theory 131, 48–61 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 52105117 and No. 52375125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laihao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, C., Yang, D., Yang, L., Sun, Y. (2025). Hyper-redundant Continuum Robot: System Development and Feedback Control. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15207. Springer, Singapore. https://doi.org/10.1007/978-981-96-0780-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0780-8_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0779-2

  • Online ISBN: 978-981-96-0780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics