Skip to main content

Learning Fault-Tolerant Quadruped Locomotion with Unknown Motor Failure Using Reliability Reward

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15208))

Included in the following conference series:

  • 131 Accesses

Abstract

As the locomotion capabilities of quadruped robots are further developed, they are increasingly deployed in more complex environments, heightening the risk of motor failures and significantly impacting their performance. Autonomous adaptation to such failures is crucial to ensure continued operation or safe return. In this paper, we propose a learning-based framework that enables quadruped robots to adapt to single-motor failure and maintain reliable locomotion. Our approach combines a teacher-student framework with a reliability reward term to learn adaptive and robust control policies. The teacher network, which has access to privileged information about motor failures, guides the learning of the student network, which relies solely on a history of proprioceptive observations. The reliability reward term encourages the robot to lift the weak leg to a safe height, mitigating the risks associated with motor failures. We evaluate our framework through extensive simulation experiments, analyzing the adaptability and reliability of the learned policies. The results demonstrate that our approach effectively enhances the robot's ability to maintain stable locomotion under motor failure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellicoso, C.D., et al.: Advances in real-world applications for legged robots. J. Field Robot. 35, 1311–1326 (2018)

    Article  MATH  Google Scholar 

  2. Bouman, A., et al.: Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion. In: Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2518–2525 (2020)

    Google Scholar 

  3. Hooks, J., et al.: ALPHRED: a multi-modal operations quadruped robot for package delivery applications. IEEE Robot. Autom. Lett. 5, 5409–5416 (2020)

    Article  MATH  Google Scholar 

  4. Cui, J., Li, Z., Qiu, J., Li, T.: Fault-tolerant motion planning and generation of quadruped robots synthesised by posture optimization and whole body control. Complex Intell. Syst. 8, 2991–3003 (2022)

    Article  MATH  Google Scholar 

  5. Chen, Z., Xi, Q., Gao, F., Zhao, Y.: Fault-tolerant gait design for quadruped robots with one locked leg using the GF set theory. Mech. Mach. Theory 178, 105069 (2022)

    Article  MATH  Google Scholar 

  6. Chen, Z., Xi, Q., Qi, C., Chen, X., Gao, Y., Gao, F.: Fault-tolerant gait design for quadruped robots with two locked legs using the GF set theory. Mech. Mach. Theory 195, 105592 (2024)

    Article  MATH  Google Scholar 

  7. Lin, C.-M., Chen, C.-H.: Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37, 110–123 (2007)

    Google Scholar 

  8. Kim, M., Shin, U., Kim, J.-Y.: Learning quadrupedal locomotion with impaired joints using random joint masking. arXiv:2403.00398 (2024)

    Google Scholar 

  9. Luo, Z., Xiao, E., Lu, P.: FT-Net: learning failure recovery and fault-tolerant locomotion for quadruped robots. IEEE Robot. Autom. Lett. 8, 8414–8421 (2023)

    Article  MATH  Google Scholar 

  10. Hou, T., Tu, J., Gao, X., Dong, Z., Zhai, P., Zhang, L.: Multi-task learning of active fault-tolerant controller for leg failures in quadruped robots. arXiv:2402.08996 (2024)

    Google Scholar 

  11. Liu, D., Zhang, T., Yin, J., See, S.: Saving the limping: fault-tolerant quadruped locomotion via reinforcement learning. arXiv:2210.00474 (2023)

    Google Scholar 

  12. Wu, X., Dong, W., Lai, H., Yu, Y., Wen, Y.: Adaptive control strategy for quadruped robots in actuator degradation scenarios. In: Proceedings of the Fifth International Conference on Distributed Artificial Intelligence, pp. 1–13. Association for Computing Machinery, New York (2023)

    Google Scholar 

  13. Margolis, G.B., Yang, G., Paigwar, K., Chen, T., Agrawal, P.: Rapid locomotion via reinforcement learning. arXiv:2205.02824 (2022)

    Google Scholar 

  14. Jin, Y., Liu, X., Shao, Y., Wang, H., Yang, W.: High-speed quadrupedal locomotion by imitation-relaxation reinforcement learning. Nat. Mach. Intell. 4, 1198–1208 (2022)

    Article  MATH  Google Scholar 

  15. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5, eabc5986 (2020)

    Google Scholar 

  16. Rudin, N., Hoeller, D., Reist, P., Hutter, M.: Learning to walk in minutes using massively parallel deep reinforcement learning. Presented at the 5th Annual Conference on Robot Learning, 19 June 2021

    Google Scholar 

  17. Wu, J., Xin, G., Qi, C., Xue, Y.: Learning robust and agile legged locomotion using adversarial motion priors. IEEE Robot. Autom. Lett. 8, 4975–4982 (2023)

    Article  MATH  Google Scholar 

  18. Choi, S., Ji, G., Park, J., Kim, H., Mun, J., Lee, J.H., Hwangbo, J.: Learning quadrupedal locomotion on deformable terrain. Sci. Robot. 8, eade2256 (2023)

    Google Scholar 

  19. Margolis, G.B., Agrawal, P.: Walk these ways: tuning robot control for generalization with multiplicity of behavior. In: Proceedings of the 6th Conference on Robot Learning, pp. 22–31. PMLR (2022)

    Google Scholar 

  20. Wu, J., Xue, Y., Qi, C.: Learning multiple gaits within latent space for quadruped robots. arXiv:2308.03014 (2023)

    Google Scholar 

  21. He, Z., Lei, K., Ze, Y., Sreenath, K., Li, Z., Xu, H.: Learning visual quadrupedal loco-manipulation from demonstrations. arXiv:2403.20328 (2024)

    Google Scholar 

  22. Kumar, A., Fu, Z., Pathak, D., Malik, J.: RMA: rapid motor adaptation for legged robots. In: Robotics: Science and Systems XVII. Robotics: Science and Systems Foundation (2021)

    Google Scholar 

  23. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30 (2017)

    Google Scholar 

  24. Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., Abbeel, P.: Asymmetric actor critic for image-based robot learning. In: Robotics: Science and Systems (2018)

    Google Scholar 

  25. Chen, D., Zhou, B., Koltun, V., Krähenbühl, P.: Learning by cheating. In: Proceedings of the Conference on Robot Learning, pp. 66–75. PMLR (2020)

    Google Scholar 

  26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:1707.06347 (2017)

    Google Scholar 

  27. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, pp. 627–635 (2011)

    Google Scholar 

  28. Makoviychuk, V., et al.: Isaac Gym: high performance GPU-based physics simulation for robot learning. arXiv:2108.10470 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 52375014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Zhao, C., Qian, L., Luo, X. (2025). Learning Fault-Tolerant Quadruped Locomotion with Unknown Motor Failure Using Reliability Reward. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15208. Springer, Singapore. https://doi.org/10.1007/978-981-96-0783-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0783-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0782-2

  • Online ISBN: 978-981-96-0783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics