Skip to main content

ExpertAP: Leveraging Multi-unit Operational Patterns for Advanced Turbine Anomaly Prediction

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15208))

Included in the following conference series:

  • 126 Accesses

Abstract

Analysing historical data from turbines can identify faults and even predict potential failures. However, most articles focus solely on one single unit, overlooking the historical operational patterns of turbines from other units, which serve as important references for human experts. We propose ExpertAP, an approach that first learns the running patterns of turbines from historical data of different units and then performs anomaly prediction for the target turbine. This approach faces two key challenges: The scarcity of high-quality anomaly labels and the difficulty in using historical anomaly labels. Regarding the first challenge, we thus introduce a semi-supervised backbone which is pre-trained with the task of sequence reconstruction using data from multiple units and fine-tuned with the task of anomaly prediction using data from the target unit. We also propose a novel two-dimensional selection strategy: Filtering out anomaly labels in the dimension of the variable during pre-training and filtering out redundant normal time-series sequences in the dimension of time during fine-tuning. Regarding the second challenge, the anomaly labels are modelled as binary time series, which significantly differ from the sensor data generated from continuous sampling. Therefore, we design different embedding layers for the anomaly labels and sensor data. These layers are trained during fine-tuning to align the two types of input data in the latent space, allowing us to utilize historical anomaly labels as a basis for anomaly prediction. The proposed framework was tested on real data collected from the Turbine Supervision Instrumentation (TSI) system, showing promising test results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, to avoid the model tending to classify all sequences as potentially anomalous, we perform time-dimensional selection over each batch of windows instead of each window. We only dismiss the batch with low anomalies rate and thus allow windows without anomalies as input.

References

  1. Qu, F., Liu, J., Zhu, H., et al.: Wind turbine condition monitoring based on assembled multidimensional membership functions using fuzzy inference system[J]. IEEE Trans. Industr. Inf. 16(6), 4028–4037 (2019)

    Article  MATH  Google Scholar 

  2. Gu, H., Si, F., Cui, Y., et al.: Information entropy theory for steam turbine system monitoring study. Eng. Rep. 2(11), e12261 (2020)

    Article  MATH  Google Scholar 

  3. Zhao, X., Ru, D., Wang, P., et al.: Fatigue life prediction of a supercritical steam turbine rotor based on neural networks. Eng. Fail. Anal. 127, 105435 (2021)

    Article  Google Scholar 

  4. Quintanar-Gago, D.A., Nelson, P.F., Díaz-Sánchez, Á., et al.: Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Reliabil. Eng. Syst. Saf. 207, 107329 (2021)

    Article  MATH  Google Scholar 

  5. Chen, Z., Zhou, D., Zio, E., et al.: Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines. Reliabil. Eng. Syst. Saf. 234, 109162 (2023)

    Article  MATH  Google Scholar 

  6. Schlechtingen M, Santos I F, Achiche S. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: System description[J]. Applied Soft Computing, 2013, 13(1): 259-270

    Google Scholar 

  7. Chen, J., Li, J., Chen, W., et al.: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders[J]. Renewable Energy 147, 1469–1480 (2020)

    Article  MATH  Google Scholar 

  8. Renström, N., Bangalore, P., Highcock, E.: System-wide anomaly detection in wind turbines using deep autoencoders[J]. Renewable Energy 157, 647–659 (2020)

    Article  MATH  Google Scholar 

  9. Chen, H., Liu, H., Chu, X., et al.: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network[J]. Renewable Energy 172, 829–840 (2021)

    Article  MATH  Google Scholar 

  10. Zhang, C., Hu, D., Yang, T.: Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost[J]. Reliability Engineering & System Safety 222, 108445 (2022)

    Article  Google Scholar 

  11. Mahalakshmi G, Sridevi S, Rajaram S. A survey on forecasting of time series data[C]//2016 international conference on computing technologies and intelligent data engineering (ICCTIDE’16). IEEE, 2016: 1-8

    Google Scholar 

  12. Van Den Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio[J]. arXiv preprint arXiv:1609.03499, 2016, 12

  13. Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:1803.01271, 2018

  14. Borovykh A, Bohte S, Oosterlee C W. Conditional time series forecasting with convolutional neural networks[J]. arXiv preprint arXiv:1703.04691, 2017

  15. Salinas, D., Flunkert, V., Gasthaus, J., et al.: DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  16. Rangapuram S S, Seeger M W, Gasthaus J, et al. Deep state space models for time series forecasting[J]. Advances in neural information processing systems, 2018, 31

    Google Scholar 

  17. Lim B, Zohren S, Roberts S. Recurrent neural filters: Learning independent bayesian filtering steps for time series prediction[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8

    Google Scholar 

  18. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30

    Google Scholar 

  19. Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115

    Google Scholar 

  20. Wu, H., Xu, J., Wang, J., et al.: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting[J]. Adv. Neural. Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  21. Liu S, Yu H, Liao C, et al. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting[C]//International conference on learning representations. 2021

    Google Scholar 

  22. Nie, Y., Nguyen, N.H., Sinthong, P., et al.: A time series is worth 64 words: long-term forecasting with transformers. arXiv preprint arXiv:2211.14730 (2022)

  23. Choi, K., Yi, J., Park, C., et al.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021)

    Article  MATH  Google Scholar 

  24. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach. Learn. Res. 2(Dec), 139–154 (2001)

    Google Scholar 

  25. Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Munir, M., Siddiqui, S.A., Dengel, A., et al.: DeepAnT: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7, 1991–2005 (2018)

    Article  MATH  Google Scholar 

  27. Xing, Z., Pei, J., Dong, G., et al.: Mining sequence classifiers for early prediction. In: Proceedings of the 2008 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 644–655 (2008)

    Google Scholar 

  28. Xing, Z., Pei, J., Philip, S.Y.: Early prediction on time series: a nearest neighbor approach. In: IJCAI, pp. 1297–1302 (2009)

    Google Scholar 

  29. Ulanova, L., Yan, T., Chen, H., et al.: Efficient long-term degradation profiling in time series for complex physical systems. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2167–2176 (2015)

    Google Scholar 

  30. Yin, X.X., Miao, Y., Zhang, Y.: Time series based data explorer and stream analysis for anomaly prediction. Wireless Commun. Mob. Comput. 2022, 5885904 (2022)

    Article  MATH  Google Scholar 

  31. Ning, Z., Jiang, Z., Miao, H., et al.: MST-GNN: a multi-scale temporal-enhanced graph neural network for anomaly detection in multivariate time series. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (ed.s) Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, pp. 382–390. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-25158-0_29

  32. Xu, J., Wu, H., Wang, J., et al.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021)

  33. Yun, C., Bhojanapalli, S., Rawat, A.S., et al.: Are transformers universal approximators of sequence-to-sequence functions?. arXiv preprint arXiv:1912.10077 (2019)

  34. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y. et al. (2025). ExpertAP: Leveraging Multi-unit Operational Patterns for Advanced Turbine Anomaly Prediction. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15208. Springer, Singapore. https://doi.org/10.1007/978-981-96-0783-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0783-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0782-2

  • Online ISBN: 978-981-96-0783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics