Skip to main content

Stereo Visual SLAM System with Road Constrained Based on Graph Optimization

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15208))

Included in the following conference series:

  • 131 Accesses

Abstract

In visual SLAM systems for autonomous vehicles, the influence of feature distribution leads to fewer vertical constraints, resulting in significant vertical drift and affecting the long-term localization performance of the system. This paper proposes a graph optimization-based stereo visual SLAM system with road constraints, which enhances vertical constraints by extracting more features from the road and establishing explicit constraints between the vehicle and the road plane. First, a stereo matching method for road feature points is proposed to compensate for the disparity-induced road feature offset between the left and right images, improving the system’s ability to extract road features and enhancing feature distribution. Then, the local road plane is used to represent the road, and explicit constraints between the road and the vehicle are established to further increase vertical constraints on the system. Finally, the local road plane, vehicle pose, and map points are optimized jointly as nodes in a nonlinear optimization. Validation through the KITTI dataset and real vehicle experiments shows that the proposed system reduces vertical drift and achieves more accurate localization results.

Supported by the Perspective Study Funding of Nanchang Automotive Institute of Intelligence and New Energy, Tongji University (Grant Number: TPD-TC202211-07).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, J., Zhang, L., Chen, Q., Hu, X., Cai, J.: A review of visual SLAM methods for autonomous driving vehicles. Eng. Appl. Artif. Intell. 114, 104992 (2022)

    Article  MATH  Google Scholar 

  2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Rob. 32, 1309–1332 (2016)

    Article  Google Scholar 

  3. Cvišić, I., Marković, I., Petrović, I.: SOFT2: Stereo Visual Odometry for Road Vehicles Based on a Point-to-Epipolar-Line Metric. IEEE Transactions on Robotics. 1–16 (2022)

    Google Scholar 

  4. Zheng, F., Tang, H., Liu, Y.-H.: Odometry-Vision-Based Ground Vehicle Motion Estimation With SE(2)-Constrained SE(3) Poses. IEEE Transactions on Cybernetics. 49, 2652–2663 (2019)

    Article  MATH  Google Scholar 

  5. Qin, T., Li, P., Shen, S.: VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Rob. 34, 1004–1020 (2018)

    Article  MATH  Google Scholar 

  6. Campos, C., Elvira, R., Rodríguez, J.J.G., M. Montiel, J.M., D. Tardós, J.: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Transactions on Robotics. 1–17 (2021)

    Google Scholar 

  7. Wu, K.J., Guo, C.X., Georgiou, G., Roumeliotis, S.I.: VINS on wheels. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5155–5162 (2017)

    Google Scholar 

  8. Zheng, F., Liu, Y.-H.: Visual-odometric localization and mapping for ground vehicles using SE(2)-XYZ Constraints. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3556–3562 (2019)

    Google Scholar 

  9. Zhou, P., Liu, Y., Gu, P., Liu, J., Meng, Z.: Visual localization and mapping leveraging the constraints of local ground manifolds. IEEE Robot. Autom. Lett. 7, 4196–4203 (2022)

    Article  MATH  Google Scholar 

  10. Zhang, M., Chen, Y., Li, M.: Vision-Aided Localization For Ground Robots. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2455–2461 (2019)

    Google Scholar 

  11. Zhang, M., Zuo, X., Chen, Y., Liu, Y., Li, M.: Pose Estimation for Ground Robots: on manifold representation, integration, reparameterization, and optimization. IEEE Trans. Rob. 37, 1081–1099 (2021)

    Article  MATH  Google Scholar 

  12. Wu, Z., Wang, H., An, H., Zhu, Y., Xu, R., Lu, K.: DPC-SLAM: discrete Plane Constrained VSLAM for Intelligent Vehicle in Road Environment. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 1555–1562 (2023)

    Google Scholar 

  13. Zhu, Y., An, H., Wang, H., Xu, R., Wu, M., Lu, K.: RC-SLAM: road constrained stereo visual SLAM system based on graph optimization. Sensors. 24, 536 (2024)

    Article  Google Scholar 

  14. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  15. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D Cameras. IEEE Trans. Rob. 33, 1255–1262 (2017)

    Article  Google Scholar 

  16. Geneva, P., Eckenhoff, K., Yang, Y., Huang, G.: LIPS: LiDAR-Inertial 3D Plane SLAM. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 123–130 (2018)

    Google Scholar 

  17. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)

    Google Scholar 

  18. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  19. Ferrera, M., Eudes, A., Moras, J., Sanfourche, M., Le Besnerais, G.: OV2SLAM: a fully online and versatile visual SLAM for real-time applications. IEEE Robot. Autom. Lett. 6, 1399–1406 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Perspective Study Funding of Nanchang Automotive Institute of Intelligence and New Energy, Tongji University (grant number TPD-TC202211-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Lu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., An, H., Wang, H., Xu, R., Lu, K. (2025). Stereo Visual SLAM System with Road Constrained Based on Graph Optimization. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15208. Springer, Singapore. https://doi.org/10.1007/978-981-96-0783-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0783-9_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0782-2

  • Online ISBN: 978-981-96-0783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics