Skip to main content

Optimal Strategies for Multiple Agents in Homicidal Chauffeur Reach-Avoid Games via Potential Game-Based Matching

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15209))

Included in the following conference series:

  • 88 Accesses

Abstract

This paper addresses a multi-agent Homicidal Chauffeur reach-avoid game, where M simple-motion evaders aim to reach the goal region, while N Dubins-car pursuers aim to prevent that by capturing evaders, and it is assumed that \(N \ge M\) and only incomplete information can be obtained by pursuers. We begin with one-pursuer-one-evader situation, and the optimal path types of the agents are inferred by the Hamiltonian of the differential game based on Homicidal Chauffeur dynamical model. Further, the optimal strategies of the agents are deduced from the engagement line we construct. Afterwards, the situation is expanded to two-pursuer-one-evader, where the intersection of engagement lines is introduced to describe the cooperation of two pursuers. Then, we analyze the N-pursuer-M-evader game by the combination of one-pursuer-one-evader and two-pursuer-one-evader games, and a potential game-based matching approach is proposed to achieve the combination with incomplete information. Simulation and reality experiments are provided to illustrate the theoretical results, where Joint Strategy Fictitious Play (JSFP) with inertia algorithm is executed to obtain the pure strategy Nash equilibrium. It is verified that the optimal pursuer-evader assignment is switchable and our scheme is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arslan, G., Marden, J., Shamma, J.: Autonomous vehicle-target assignment: a game-theoretical formulation. J. Dyn. Syst. Measur. Control-Trans. ASME 129 (2007). https://doi.org/10.1115/1.2766722

  2. Boissonnat, J.D., Robotique, P., Prisme, P.: Accessibility region for a car that only moves forwards along optimal paths (1994)

    Google Scholar 

  3. Chen, M., Zhou, Z., Tomlin, C.J.: Multiplayer reach-avoid games via low dimensional solutions and maximum matching. In: 2014 American Control Conference, pp. 1444–1449 (2014). https://doi.org/10.1109/ACC.2014.6859219

  4. Chen, M., Zhou, Z., Tomlin, C.J.: Multiplayer reach-avoid games via pairwise outcomes. IEEE Trans. Autom. Control 62(3), 1451–1457 (2017). https://doi.org/10.1109/TAC.2016.2577619

    Article  MathSciNet  MATH  Google Scholar 

  5. Chun, W.H., Papanikolopoulos, N.: Robot surveillance and security. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1605–1626. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_61

    Chapter  MATH  Google Scholar 

  6. Cockayne, E.J., Hall, G.W.C.: Plane motion of a particle subject to curvature constraints. SIAM J. Control 13(1), 197–220 (1975). https://doi.org/10.1137/0313012

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Alfonso, L., Fedele, G., Bono, A.: Distributed region following and perimeter surveillance tasks in star-shaped sets. Syst. Control Lett. 172, 105437 (2023). https://doi.org/10.1016/j.sysconle.2022.105437

    Article  MathSciNet  MATH  Google Scholar 

  8. Garcia, E., Casbeer, D.W., Von Moll, A., Pachter, M.: Cooperative two-pursuer one-evader blocking differential game. In: 2019 American Control Conference (ACC), pp. 2702–2709 (2019). https://doi.org/10.23919/ACC.2019.8814294

  9. Garcia, E., Casbeer, D.W., Von Moll, A., Pachter, M.: Multiple pursuer multiple evader differential games. IEEE Trans. Autom. Control 66(5), 2345–2350 (2021). https://doi.org/10.1109/TAC.2020.3003840

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, H.: Reachability-based control for human and autonomous agents in adversarial games. Ph.D. thesis, Stanford University (2012)

    Google Scholar 

  11. Huang, H., Ding, J., Zhang, W., Tomlin, C.J.: A differential game approach to planning in adversarial scenarios: a case study on capture-the-flag. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1451–1456 (2011). https://doi.org/10.1109/ICRA.2011.5980264

  12. Huang, H., Ding, J., Zhang, W., Tomlin, C.J.: Automation-assisted capture-the-flag: a differential game approach. IEEE Trans. Control Syst. Technol. 23(3), 1014–1028 (2015). https://doi.org/10.1109/TCST.2014.2360502

    Article  MATH  Google Scholar 

  13. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Wiley, New York (1965)

    Google Scholar 

  14. Karpinski, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problems. A Clarendon Press Publication (1998)

    Google Scholar 

  15. Marden, J.R., Arslan, G., Shamma, J.S.: Joint strategy fictitious play with inertia for potential games. IEEE Trans. Autom. Control 54(2), 208–220 (2009). https://doi.org/10.1109/TAC.2008.2010885

    Article  MathSciNet  MATH  Google Scholar 

  16. Oyler, D.W., Girard, A.R.: Dominance regions in the homicidal chauffeur problem. In: 2016 American Control Conference (ACC), pp. 2494–2499 (2016). https://doi.org/10.1109/ACC.2016.7525291

  17. Pu, H., He, L., Cheng, P., Sun, M., Chen, J.: Security of industrial robots: vulnerabilities, attacks, and mitigations. IEEE Network 37(1), 111–117 (2023). https://doi.org/10.1109/MNET.116.2200034

    Article  MATH  Google Scholar 

  18. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. B (2003)

    Google Scholar 

  19. Yan, R., Shi, Z., Zhong, Y.: Reach-avoid games with two defenders and one attacker: an analytical approach. IEEE Trans. Cybern. 49(3), 1035–1046 (2019). https://doi.org/10.1109/TCYB.2018.2794769

    Article  MATH  Google Scholar 

  20. Zhou, Z., Takei, R., Huang, H., Tomlin, C.J.: A general, open-loop formulation for reach-avoid games. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 6501–6506 (2012). https://doi.org/10.1109/CDC.2012.6426643

Download references

Acknowledgments

This work was supported by National Science and Technology Major Project (2022ZD0116401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Yao or Xiao Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, L., Qian, L., Niu, Z., Zhang, X., Yao, W., Zhang, X. (2025). Optimal Strategies for Multiple Agents in Homicidal Chauffeur Reach-Avoid Games via Potential Game-Based Matching. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15209. Springer, Singapore. https://doi.org/10.1007/978-981-96-0789-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0789-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0788-4

  • Online ISBN: 978-981-96-0789-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics