Skip to main content

3D Rock and Pothole Detection in Desert for the Wild Navigation

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15209))

Included in the following conference series:

  • 17 Accesses

Abstract

Robust rock and pothole detection is essential for autonomous exploration in challenging desert environments. The barren environment requires accurate traversability estimation based on the detected rocks and potholes in the wild navigation. However, the diverse shapes, scales, and occlusions of rocks and potholes make the detection challenging. Current single-sensor approaches (e.g., Camera or LiDAR methods) struggle to obtain accurate locations and landmarks for traversability estimation. However, the light and ground conditions captured by Cameras and the sparsity of LiDAR point cloud pose challenges for singles-sensor pipelines. Additionally, the undulating ground of the desert often makes the sensor calibration with errors, which has a significant influence on the accurate detection. To this end, we present DyFTNet, a LiDAR-Camera fusion-based 3D rock and pothole detection method that specially combines features from both modalities by dynamically correcting point cloud projection errors induced by desert surface irregularities. Subsequently, we construct a multi-modality 3D detection dataset in the desert environment, named U2Ground dataset, consisting of 5534 rocks and 2926 potholes within 1463 pairs of LiDAR-Camera frames. DyFTNet is verified on U2Ground with a comparison to the state-of-the-art methods and superior performance is obtained. The code and dataset will be available on the website https://github.com/Yyb-XJTU/U2Ground-dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma, V., et al.: Autonomous robotics is driving perseverance rover’s progress on mars. Sci. Robot. 8(80), eadi3099 (2023)

    Google Scholar 

  2. Karunasekera, H., Zhang, H., Xi, T., Wang, H.: Stereo vision based negative obstacle detection. In: IEEE International Conference on Control and Automation, pp. 834–838 (2017)

    Google Scholar 

  3. Matthies, L., et al.: Lunar rover localization using craters as landmarks. In: IEEE Aerospace Conference, pp. 1–17 (2022)

    Google Scholar 

  4. Ishida, T., Takahashi, M., Fukuda, S.: Crater detection robust to illumination and shape changes using convolutional neural network. Trans. Japan Society Aeronaut. Space Sci. 64(4), 197–204 (2021)

    MATH  Google Scholar 

  5. Tewari, A., Verma, V., Srivastava, P., Jain, V., Khanna, N.: Automated crater detection from co-registered optical images, elevation maps and slope maps using deep learning. Planet. Space Sci. 218, 105500 (2022)

    Article  Google Scholar 

  6. Lin, X., et al.: Lunar crater detection on digital elevation model: A complete workflow using deep learning and its application. Remote Sens. 14(3), 621 (2022)

    Article  MATH  Google Scholar 

  7. Shang, E., An, X., Li, J., He, H.: A novel setup method of 3d lidar for negative obstacle detection in field environment. In: IEEE Conference on Intelligent Transportation Systems, pp. 1436–1441 (2014)

    Google Scholar 

  8. Zhou, Y., Li, X., Hua, B.: Crater identification simulation using LiDAR on Lunar rover. Measurement 210, 112550 (2023)

    Google Scholar 

  9. Zhong, Z., Wang, Z., Lin, L., Liang, H., Xu, F.. Robust negative obstacle detection in off-road environments using multiple lidars. In: IEEE International Conference on Control, Automation and Robotics, pp. 700–705 (2020)

    Google Scholar 

  10. Goodin, C., Carrillo, J., Monroe, J.G., Carruth, D.W., Hudson, C.R.: An analytic model for negative obstacle detection with lidar and numerical validation using physics-based simulation. Sensors 21(9), 3211 (2021)

    Google Scholar 

  11. Qian, Y., Wang, X., Zhuang, H., Wang, C., Yang, M.: 3d vehicle detection enhancement using tracking feedback in sparse point clouds environments. IEEE Open J. Intell. Transport. Syst. 4, 471–480 (2023)

    Article  MATH  Google Scholar 

  12. Bavirisetti, D.P., Martinsen, H.R., Kiss, G.H., Lindseth, F.: A multi-task vision transformer for segmentation and monocular depth estimation for autonomous vehicles. IEEE Open J. Intell. Transport. Syst. 4, 909–928 (2023)

    Google Scholar 

  13. Valiente, R., et al.: Robust perception and visual understanding of traffic signs in the wild. IEEE Open J. Intell. Transport. Syst. 4, 611–625 (2023)

    Google Scholar 

  14. Liu, Z., et al.: Bevfusion: multi-task multi-sensor fusion with unified bird’s-eye view representation. In: IEEE International Conference on Robotics and Automation, pp. 2774–2781 (2023)

    Google Scholar 

  15. Chen, Y., Li, Y., Zhang, X., Sun, J., Jia, J.: Focal sparse convolutional networks for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5428–5437 (2022)

    Google Scholar 

  16. Li, Y., et al.: Voxel field fusion for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1120–1129 (2022)

    Google Scholar 

  17. Khalil, Y.H., Mouftah, H.T.: Licanet: further enhancement of joint perception and motion prediction based on multi-modal fusion. IEEE Open J. Intell. Transport. Syst. 3, 222–235 (2022)

    Google Scholar 

  18. Sindagi, V.A., Zhou, Y. and Tuzel, O.: Mvx-net: Multimodal voxelnet for 3d object detection. In: IEEE International Conference on Robotics and Automation, pp. 7276–7282 (2019)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  20. Liang, T., et al.: Bevfusion: A simple and robust lidar-camera fusion framework. Adv. Neural. Inf. Process. Syst. 35, 10421–10434 (2022)

    MATH  Google Scholar 

  21. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  22. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  MATH  Google Scholar 

  23. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229 (2020)

    Google Scholar 

  24. Geiger, A., Lenz, P., Urtasun, R.: The kitti vision benchmark suite. http://www.cvlibs.net/datasets/kitti2(5) (2015)

  25. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  26. Zhou, Y., et al.: End-to-end multi-view fusion for 3d object detection in lidar point clouds. In: Conference on Robot Learning, pp. 923–932 (2020)

    Google Scholar 

  27. Kingma, DP., Jimmy, B.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianru Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, Y. et al. (2025). 3D Rock and Pothole Detection in Desert for the Wild Navigation. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15209. Springer, Singapore. https://doi.org/10.1007/978-981-96-0789-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0789-1_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0788-4

  • Online ISBN: 978-981-96-0789-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics