Skip to main content

Sim-to-Real Control of Trifinger Robot by Deep Reinforcement Learning

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15206))

Included in the following conference series:

  • 14 Accesses

Abstract

Currently, deep reinforcement learning primarily focuses on simulated environments in the field of robot control. Algorithms deployed on real robots have high platform requirements, leading to practical implementation difficulties. This paper presents an easily implementable algorithm transfer framework deployed to a trifinger robot. Firstly, we obtain well-performing policy models by various deep reinforcement learning algorithms trained on a simulated environment. Through multimodal information fusion, domain randomization and observation-action space pruning, the models are successfully transferred to the real robots. The presented framework is capable of controlling a real trifinger robot to move a randomly placed target to a specified position with the success rate of 90.74%, demonstrating the feasibility of our framework and the effectiveness of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allshire, A., MittaI, M., Lodaya, V., et al.: Transferring dexterous manipulation from GPU simulation to a remote real-world trifinger. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11802–11809. IEEE (2022)

    Google Scholar 

  2. Andrychowicz, O.A.I.M., Baker, B., Chociej, M., et al.: Learning dexterous in-hand manipulation. Int. J. Rob. Res. 39(1), 3–20 (2020)

    Article  MATH  Google Scholar 

  3. Lee, J., Hwangbo, J., Wellhausen, L., et al.: Learning quadrupedal locomotion over challenging terrain. Sci. Rob. 5(47), eabc5986 (2020)

    Google Scholar 

  4. Wüthrich, M., Widmaier, F., Grimminger, F., et al.: Trifinger: an open-source robot for learning dexterity. arXiv preprint arXiv:2008.03596 (2020)

  5. Open-source URL for TriFinger robot. https://github.com/open-dynamic-robot-initiative

  6. Makoviychuk, V., Wawrzyniak, L., Guo, Y., et al.: Isaac gym: High performance GPU-based physics simulation for robot learning. arxiv preprint arxiv:2108.10470 (2021)

  7. Schulman, J., Wolski, F., Dhariwal, P., et al.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  8. Haarnoja, T., Zhou, A., Hartikainen, K., et al.: Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905 (2018)

  9. Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al.: Continuous control with deep reinforcement learning. arxiv preprint arxiv:1509.02971 (2015)

  10. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: International Conference on Machine Learning, pp. 1587–1596. PMLR (2018)

    Google Scholar 

  11. Hwangbo, J., Lee, J., Dosovitskiy, A., et al.: Learning agile and dynamic motor skills for legged robots. Sci. Rob. 4(26), eaau5872 (2019)

    Google Scholar 

  12. Gürtler, N., Blaes, S., Kolev, P., et al.: Benchmarking offline reinforcement learning on real-robot hardware. arxiv preprint arxiv:2307.15690 (2023)

  13. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (Version 8.0.0) [Computer software] (2023). https://github.com/ultralytics/ultralytics

Download references

Acknowledgments

This work was supported in part by NSFC under grant No.62125305, No. U23A20339, No.62088102, No.62203348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipeng Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wan, Q., Wu, T., Ye, J., Wan, L., Lan, X. (2025). Sim-to-Real Control of Trifinger Robot by Deep Reinforcement Learning. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15206. Springer, Singapore. https://doi.org/10.1007/978-981-96-0792-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0792-1_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0791-4

  • Online ISBN: 978-981-96-0792-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics