Skip to main content

Kalman Filter-Based Acoustic Guidance Docking System for Autonomous Underwater Vehicle

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15206))

Included in the following conference series:

  • 13 Accesses

Abstract

In this paper, an ultra-short baseline positioning system-guided (USBL-guided) docking system is proposed to achieve smooth docking guidance for autonomous underwater vehicle (AUV). First, the main challenges of USBL-guided AUV docking are illustrated. Second, to address the issue of discrete USBL positioning samples due to the low positioning frequency and drifting outliers, Least Square Method is applied to select an appropriate initialize sample for USBL filter to prevent the wrong tendency of state prediction caused by the outliers of USBL. Subsequently, we introduce an adaptive exponential weight-improved Kalman Filter that dynamically adjusts the Kalman gain in update process based on the distance between prediction and measurement of state. Furthermore, the derivation process and proof of algorithm are also introduced. The feasibility and efficiency of the improved filter are validated by the comparative experiment carried out in lake trials with the ground truth of dead-reckoning of inertial navigation system (INS). The comparative result shows that the improved KF can efficiently reduce the drifting samples and get a smoother trajectory of AUV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu, N., Wang, D., Peng, Z., Wang, J., Han, Q.L.: Advances in line-of-sight guidance for path following of autonomous marine vehicles: an overview. IEEE Trans. Syst. Man Cybern. Syst. 53(1), 12–28 (2022)

    Article  MATH  Google Scholar 

  2. Vasilijević, A., Nađ, Đ, Mandić, F., Mišković, N., Vukić, Z.: Coordinated navigation of surface and underwater marine robotic vehicles for ocean sampling and environmental monitoring. IEEE/ASME Trans. Mechatron. 22(3), 1174–1184 (2017)

    Article  MATH  Google Scholar 

  3. Brito, M.P., Lewis, R.S., Bose, N., Griffiths, G.: Adaptive autonomous underwater vehicles: an assessment of their effectiveness for oceanographic applications. IEEE Trans. Eng. Manag. 66(1), 98–111 (2018)

    Article  Google Scholar 

  4. Wang, N., Wang, Y., Er, M.J.: Review on deep learning techniques for marine object recognition: architectures and algorithms. Control. Eng. Pract. 118, 104458 (2022)

    Article  MATH  Google Scholar 

  5. Ahmed, F., Xiang, X., Jiang, C., Xiang, G., Yang, S.: Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle. Ocean Eng. 268, 113300 (2023)

    Article  MATH  Google Scholar 

  6. Carreras, M., Hernández, J.D., Vidal, E., Palomeras, N., Ribas, D., Ridao, P.: Sparus ii AUV–a hovering vehicle for seabed inspection. IEEE J. Oceanic Eng. 43(2), 344–355 (2018)

    Article  MATH  Google Scholar 

  7. Shukla, A., Karki, H.: Application of robotics in onshore oil and gas industry–a review part i. Robot. Auton. Syst. 75, 490–507 (2016)

    Article  MATH  Google Scholar 

  8. Shukla, A., Karki, H.: Application of robotics in offshore oil and gas industry–a review part ii. Robot. Auton. Syst. 75, 508–524 (2016)

    Article  MATH  Google Scholar 

  9. Kimball, P.W., et al.: The Artemis under-ice AUV docking system. J. Field Rob. 35(2), 299–308 (2018)

    Article  MATH  Google Scholar 

  10. Raspante, F.: Underwater mobile docking of autonomous underwater vehicles. In: Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, pp. 14–19 (2012)

    Google Scholar 

  11. Li, Y., Jiang, Y., Cao, J., Wang, B., Li, Y.: AUV docking experiments based on vision positioning using two cameras. Ocean Eng. 110, 163–173 (2015)

    Article  MATH  Google Scholar 

  12. Palomeras, N., et al.: AUV homing and docking for remote operations. Ocean Eng. 154, 106–120 (2018)

    Article  MATH  Google Scholar 

  13. Vandavasi, B.N.J., Gidugu, A.R., Venkataraman, H.: Deep learning aided magnetostatic fields based real-time pose estimation of AUV for homing applications. IEEE Sens. Lett. 7(4), 1–4 (2023)

    Article  MATH  Google Scholar 

  14. Vandavasi, B.N.J., et al.: AI-ML-enabled electromagnetic homing guidance system for scientific autonomous underwater vehicles. Mar. Technol. Soc. J. 57(1), 7–15 (2023)

    Article  Google Scholar 

  15. Kang, H., et al.: Mission management technique for multi-sensor-based AUV docking. J. Ocean Eng. Technol. (2022)

    Google Scholar 

  16. Wang, Z., Guan, X., Liu, C., Yang, S., Xiang, X., Chen, H.: Acoustic communication and imaging sonar guided AUV docking: system infrastructure, docking methodology and lake trials. Control. Eng. Pract. 136, 105529 (2023)

    Article  Google Scholar 

  17. Yazdani, A.M., Sammut, K., Yakimenko, O., Lammas, A.: A survey of underwater docking guidance systems. Robot. Auton. Syst. 124, 103382 (2020)

    Article  Google Scholar 

  18. Junejo, N.U.R., et al.: A survey on physical layer techniques and challenges in underwater communication systems. J. Mar. Sci. Eng. 11(4), 885 (2023)

    Article  MATH  Google Scholar 

  19. Allotta, B., et al.: A new AUV navigation system exploiting unscented Kalman filter. Ocean Eng. 113, 121–132 (2016)

    Article  MATH  Google Scholar 

  20. Nurhadi, H., Herlambang, T., Adzkiya, D.: Trajectory estimation of autonomous surface vehicle using square root ensemble Kalman filter. In: 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), pp. 325–328. IEEE (2019)

    Google Scholar 

  21. Fu, S., Guan, X., Liu, Z., Wang, Z., Yang, S., Zhang, H.: Adaptive unscented particle filter algorithm for acoustic positioning of AUV docking in shallow water. In: 2022 7th International Conference on Automation, Control and Robotics Engineering (CACRE), pp. 93–98. IEEE (2022)

    Google Scholar 

  22. Zhang, T., Wang, J., Zhang, L., Guo, L.: A student’s t-based measurement uncertainty filter for SINS/USBL tightly integration navigation system. IEEE Trans. Veh. Technol. 70(9), 8627–8638 (2021)

    Article  MATH  Google Scholar 

  23. Liu, S., Zhang, T., Zhang, L.: A sins aided correct method for USBL range based on maximum correntropy criterion adaptive filter. IEEE Trans. Instrum. Meas. 71, 1–13 (2022)

    Article  MATH  Google Scholar 

  24. Weng, Y., et al.: Autonomous underwater vehicle link alignment control in unknown environments using reinforcement learning. J. Field Rob. (2024)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (under grant 52131101 and 52071153), and Hubei Provincial Natural Science Foundation for Innovation Groups (under grant 2021CFA026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbo Xiang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Xiang, X., Xiong, X., Yang, S. (2025). Kalman Filter-Based Acoustic Guidance Docking System for Autonomous Underwater Vehicle. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15206. Springer, Singapore. https://doi.org/10.1007/978-981-96-0792-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0792-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0791-4

  • Online ISBN: 978-981-96-0792-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics