Skip to main content

Design and Analysis of an Exoskeleton Robotic Actuator for Lumbar Spine Assisted Rehabilitation

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15203))

Included in the following conference series:

  • 22 Accesses

Abstract

Based on the biological structure of the Elephant Trumpet class, a soft body actuator that can satisfy the above requirements is designed by combining the extension PAM and contraction PAM. This will allow the lumbar spine assisted rehabilitation exoskeleton robot to provide support function to reduce the compression force of the lumbar spine joints and to meet the required output force requirement. The actuator is a variable stiffness pneumatic artificial muscle (VSPAM) with both extension and contraction functions. A new mathematical model of the VSPAM’s output force is developed using the energy conservation principle after the kinematic analysis of the device is completed. A strong correlation is found in quasi-static studies examining the relationship between the output force experimental data of VSPAM and the new mathematical model. Stiffness experiment results confirm the VSPAM’s ability to have variable stiffness at a range of particular lengths, showing that the stiffness of the VSPAM can be changed without reference to a particular length. Ultimately, an exoskeleton robot prototype for lumbar spine assisted rehabilitation is built for lumbar rehabilitation training. The experimental results show that the VSPAM has several advantages over traditional soft actuators, such as the capacity to change the stiffness at particular lengths and the ability to contract and extend relative to the VSPAM’s initial length to generate contraction and extension forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y.M., Liu, Z.F., et al.: The aging trend of Chinese population and the prediction of aging population in 2015–2025. Chinese J. Soc. Med. 35(5), 408–483 (2018)

    MATH  Google Scholar 

  2. Li, C.Y., Shi, Y.: Analysis of risk factors of cervical spondylosis. Chinese J. Acupuncture Moxibustion. 9(3), 128–130 (2020)

    MATH  Google Scholar 

  3. Adam, B.Z., Homayoon, K., Andrew, C.: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatronics. 11(2), 128–138 (2006)

    Article  Google Scholar 

  4. Konrad, S., Wilfried, J.E., Hans, W.R.: Exoskeleton toenhance industrial production. Mob. Serv. Robot. 12, 53–60 (2014)

    Google Scholar 

  5. Chen, S., Wu, H.F., Liu, S., et al.: Development of waist assist mechanism for wearable handling assist robot. Mech. Eng. Technol. 10(2), 248–256 (2021)

    Article  MATH  Google Scholar 

  6. David, M.F., Mohammad, A., Joan, M.S.: PLAD stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks. J. Electromyogr. Kinesiol. 19(6), 403–412 (2009)

    Article  Google Scholar 

  7. Yumeko, I., Takayuki, T., Yoshihito, S., et al.: Motion-based-design of elastic material for passive assistive device using musculoskeletal model. J. Robot. Mechatronics. 23(6), 978–990 (2011)

    Article  Google Scholar 

  8. Zhang, H.H., Abhijit, K., Frank, C.S.: Design and preliminary evaluation of a passive spine exoskeleton. J. Med. Devices 10(1), 011002 (2016)

    Article  MATH  Google Scholar 

  9. Li, X.P., Han, J.H., Guo, B.J., et al.: Research on wearable waist-assisted robot based on flexible pneumatic actuator. J. Autom. 42(12), 1849–1858 (2016)

    MATH  Google Scholar 

  10. Wu, J.X., Han, Y.L., Ke, Z.Y., et al.: Research on flexible exoskeleton robot technology. Electromech. Eng. Technol. 50(02), 127–129 (202l)

    Google Scholar 

  11. Takayuki, T., Yuta, S., et al.: Smart suit: soft power suit with semi-active assist mechanism - prototype for supporting waist and knee joint. In: International Conference on Control, Automation and Systems. Seoul, Korea, Oct. 14–17, 2008, pp. 2002–2005 (2008)

    Google Scholar 

  12. Lee, J.-W., Kim, G.: Design and control of a lifting assist device for preventing lower back injuries in industrial athletes. Int. J. Precis. Eng. Manuf. 20(10), 1825–1838 (2019). https://doi.org/10.1007/s12541-019-00183-0

    Article  MATH  Google Scholar 

  13. Dong, J.H., Lim, H.S., Park, S.I., et al.: Singular wire-driven series elastic actuation with force control for a waist assistive exoskeleton, H-WEX v2. IEEE/ASME Trans. Mechantronics. 25(2), 1026–1035 (2020)

    Article  Google Scholar 

  14. Kohei, N., Helmut, H., Kang, R., et al.: A soft body as a reservoir case studies in a dynamic model of octopus inspired soft robotic arm. Front. Comput. Neurosci. 7, 1–19 (2013)

    Google Scholar 

  15. Tang, Z.L., Wang, H.Y., Zhang, H.K., et al.: Experimental investigation on the forward speed of passive wheeled serpentine robot. Mod. Manuf. Technol. Equipment. 283(6), 86–89 (2020)

    MATH  Google Scholar 

  16. Tian, J.W., Wang, T.M., Shi, Z.Y., et al.: Kinematic analysis and experiment of elephant-like trunk robotic arm. Robotics 39(5), 585–594 (2017)

    MATH  Google Scholar 

  17. Gao, W.X., Wang, H.L.: Research process and development prospect study of bionic robot. Heilongjiang Sci. 9(1), 26–27 (2018)

    MATH  Google Scholar 

  18. Li, Z.Y.: Development application and prospect of soft robot. Sci. Technol. Commun. 10(23), 109–110 (2018)

    MATH  Google Scholar 

  19. Li, H.L., Yao, J.T., Zhou, P., et al.: Untethered high-load soft gripping robots: a review. J. Mech. Eng. 56(1), 1–15 (2020)

    MATH  Google Scholar 

  20. Al-Fahaam, H., Nefti-Meziani, S., Theodoridis, T., et al.: The design and mathematical model of a novel variable stiffness extensor-contractor pneumatic artificial muscle. Soft Rob. 5(5), 576–591 (2018)

    Article  MATH  Google Scholar 

  21. Chou, C.P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  MATH  Google Scholar 

  22. Do, B.H., Choi, I., Follmer, S.: An all-soft variable impedance actuator enabled by embedded layer jamming. IEEE/ASME Trans. Mechatron. 27(6), 5529–5540 (2022)

    Article  MATH  Google Scholar 

  23. Meller, M.A., Bryant, M., Garcia, E.: Reconsidering the McKibben muscle: Energetics, operating fluid, and bladder material. J. Intell. Mater. Syst. Struct. 25(18), 2276–2293 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Changzhou Social Development Science and Technology Support Program, No. CE20225037; Jiangsu special project for frontier leading base technology, No. BK20192004; Changzhou Science and Technology Program Project (Key Laboratory), No. CM20223014; Suzhou key industry technology innovation - prospective application research project, No. SYG202143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsen Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Xu, L., Wang, Z., Ye, L., Mei, H. (2025). Design and Analysis of an Exoskeleton Robotic Actuator for Lumbar Spine Assisted Rehabilitation. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15203. Springer, Singapore. https://doi.org/10.1007/978-981-96-0795-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0795-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0794-5

  • Online ISBN: 978-981-96-0795-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics