Skip to main content

Design and Performance Testing of Electro-fluidic Soft Actuator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15203))

Included in the following conference series:

  • 15 Accesses

Abstract

Electro-fluidic actuators have become an investigated hotspot for their inherent adaptability and security of human-machine interaction. This paper points to combining the characteristics of dielectric elastomers and fluid actuators and developing electro-fluidic soft actuators by modifying Al2O3 on the surface of nano BaTiO3 to move forward the dielectric constant and breakdown field strength and by utilizing the silicone rubber material as a substrate. Tests on the actuation strain and current performance of the electro-fluidic soft actuator under diverse loads were carried out, which appeared that the maximum actuation strain of the electro-fluidic soft actuator was 17.20% under 100 g load, the critical breakdown current of the actuator was 115 μA~130 μA, and the maximum electro-mechanical conversion efficiency of the actuator was 67.93% under different loads. Experimental results show that an appropriate load is beneficial to improving the energy utilization of the actuator. Finally, the development of electro-fluidic soft actuators has opened new avenues for materials development and application, contributing to the development of soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shintake, J., Cacucciolo, V., Floreano, D., et al.: Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018)

    Article  Google Scholar 

  2. Goh, G.D., Goh, G.L., Lyu, Z., et al.: 3D printing of robotic soft grippers: toward smart actuation and sensing. Adv. Mater. Technol. 7(11), 2101672 (2022)

    Article  MATH  Google Scholar 

  3. Qu, J., Mao, B., Li, Z., et al.: Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Func. Mater. 33(41), 2306249 (2023)

    Article  MATH  Google Scholar 

  4. Dou, W., Zhong, G., Cao, J., et al.: Soft robotic manipulators: designs, actuation, stiffness tuning, and sensing. Adv. Mater. Technol. 6(9), 2100018 (2021)

    Article  Google Scholar 

  5. Fang, G., Chow, M.C., Ho, J.D., et al.: Soft robotic manipulator for intraoperative MRI-guided transoral laser microsurgery. Sci. Robot. 6(57), eabg5575 (2021)

    Google Scholar 

  6. Lee, J.-Y., Seo, Y.-S., Park, C., et al.: Shape-adaptive universal soft parallel gripper for delicate grasping using a stiffness-variable composite structure. IEEE Trans. Industr. Electron. 68(12), 12441–12451 (2020)

    Article  MATH  Google Scholar 

  7. Hong, Y., Zhao, Y., Berman, J., et al.: Angle-programmed tendril-like trajectories enable a multifunctional gripper with ultradelicacy, ultrastrength, and ultraprecision. Nat. Commun. 14(1), 4625 (2023)

    Article  MATH  Google Scholar 

  8. Banet, P., Zeggai, N., Chavanne, J., et al.: Evaluation of dielectric elastomers to develop materials suitable for actuation. Soft Matter 17(48), 10786–10805 (2021)

    Article  MATH  Google Scholar 

  9. Chen, F., Song, Z., Chen, S., et al.: Morphological design for pneumatic soft actuators and robots with desired deformation behavior. IEEE Trans. Robot. (2023)

    Google Scholar 

  10. Liang, X., Yuan, C., Wan, C., et al.: Soft self‐healing robot driven by new micro two‐way shape memory alloy spring. Adv. Sci., 2305163 (2023)

    Google Scholar 

  11. Li, Y., Zhang, F., Liu, Y., et al.: A tailorable series of elastomeric‐to‐rigid, selfhealable, shape memory bismaleimide. Small, 2307244 (2023)

    Google Scholar 

  12. He, Q., Yin, G., Vokoun, D., et al.: Review on improvement, modeling, and application of ionic polymer metal composite artificial muscle. J. Bionic Eng. 19(2), 279–298 (2022)

    Article  MATH  Google Scholar 

  13. Maurin V, Chang Y, Ze Q, et al. Liquid Crystal Elastomer–Liquid Metal Composite: Ultrafast, Untethered, and Programmable Actuation by Induction Heating. Advanced Materials, 2302765 (2023)

    Google Scholar 

  14. Jiao, D., Zhu, Q.L., Li, C.Y., et al.: Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 55(11), 1533–1545 (2022)

    Article  MATH  Google Scholar 

  15. Liu, S., Wang, F., Liu, Z., et al.: A two-finger soft-robotic gripper with enveloping and pinching grasping modes. IEEE/ASME Trans. Mechatron. 26(1), 146–155 (2020)

    MATH  Google Scholar 

  16. Wei, Y., Li, S., Zhang, X., et al.: Smart devices based on the soft actuator with nafion-polypropylene-PDMS/graphite multilayer structure. Appl. Sci. 10(5), 1829 (2020)

    Article  MATH  Google Scholar 

  17. Wang, Z., Wang, Y., Wang, Z., et al.: 3D printing of electrically responsive PVC gel actuators. ACS Appl. Mater. Interfaces 13(20), 24164–24172 (2021)

    Article  MATH  Google Scholar 

  18. Ze, Q., Wu, S., Nishikawa, J., et al.: Soft robotic origami crawler. Sci. Adv. 8(13), eabm7834 (2022)

    Google Scholar 

  19. Wu, F., Lin, X., Xu, Y., et al.: Light-driven locomotive soft actuator and multi-functional sensors based on asymmetric PVA/carbon/PE bilayer film. Sci. China Mater., 1–12 (2023)

    Google Scholar 

  20. Li, J., Wang, M., Cui, Z., et al.: Dual-responsive jumping actuators by light and humidity. J. Mater. Chem. A 10(47), 25337–25346 (2022)

    Article  MATH  Google Scholar 

  21. Xu, H., Bai, S., Gu, G., et al.: Bioinspired self-resettable hydrogel actuators powered by a chemical fuel. ACS Appl. Mater. Interfaces 14(38), 43825–43832 (2022)

    Article  Google Scholar 

  22. Mosadegh, B., Polygerinos, P., Keplinger, C., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Func. Mater. 24(15), 2163–2170 (2014)

    Article  Google Scholar 

  23. Guan, Q., Sun, J., Liu, Y., et al.: Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Rob. 7(5), 597–614 (2020)

    Article  Google Scholar 

  24. Yan, J., Zhang, X., Xu, B., et al.: A new spiral-type inflatable pure torsional soft actuator. Soft Rob. 5(5), 527–540 (2018)

    Article  MATH  Google Scholar 

  25. Nie, S., Huo, L., Ji, H., et al.: Deformation characteristics of three-dimensional spiral soft actuator driven by water hydraulics for underwater manipulator. Soft Rob. (2023)

    Google Scholar 

  26. Gratz-Kelly, S., Rizzello, G., Fontana, M., et al.: A multi-mode, multi-frequency dielectric elastomer actuator. Adv. Func. Mater. 32(34), 2201889 (2022)

    Article  Google Scholar 

  27. Zhang, Y., Ellingford, C., Zhang, R., et al.: Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials. Adv. Func. Mater. 29(15), 1808431 (2019)

    Article  Google Scholar 

  28. Bernat, J., Kolota, J., Rosset, S.: Identification of a nonlinear dielectric elastomer actuator based on the harmonic balance method. IEEE/ASME Trans. Mechatron. 26(5), 2664–2675 (2020)

    Article  MATH  Google Scholar 

  29. Panahi-Sarmad, M., Zahiri, B., Noroozi, M.: Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sens. Actuators A Phys. 293 (2019)

    Google Scholar 

  30. Sholl, N., Moss, A., Kier, W.M., et al.: A soft end effector inspired by cephalopod suckers and augmented by a dielectric elastomer actuator. Soft Rob. 6(3), 356–367 (2019)

    Article  Google Scholar 

  31. Li, Z., Gao, C., Fan, S., et al.: Cell nanomechanics based on dielectric elastomer actuator device. Nano-Micro Lett. 11(1–19) (2019)

    Google Scholar 

  32. Xu, S., Nunez, C.M., Souri, M., et al.: A compact DEA-based soft peristaltic pump for power and control of fluidic robots. Sci. Rob. 8(79), eadd4649 (2023)

    Google Scholar 

  33. Dong, J., Yan, H., Lv, X., et al.: Reprocessable polyurethane elastomers based on reversible ketal exchange: dielectric properties and water resistance. J. Mater. Chem. C 11(4), 1369–1380 (2023)

    Article  Google Scholar 

  34. Tan, T., Siew, W.H., Han, L., et al.: Self-healing of electrical damage in microphase-separated polyurethane elastomers with robust dielectric strength utilizing dynamic hydrogen bonding networks. ACS Appl. Polym. Mater. 5(9), 7132–7143 (2023)

    Article  MATH  Google Scholar 

  35. Yin, L.-J., Zhao, Y., Zhu, J., et al.: Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 12(1), 4517 (2021)

    Article  MATH  Google Scholar 

  36. Molberg, M., Crespy, D., Rupper, P., et al.: High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Func. Mater. 20(19), 3280–3291 (2010)

    Article  Google Scholar 

  37. Madsen, F.B., Dimitrov, I., Daugaard, A.E., et al.: Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym. Chem. 4(5), 1700–1707 (2013)

    Article  Google Scholar 

  38. Zhang, C., Zhang, Q.: Deep eutectic solvent inclusions for high-k composite dielectric elastomers. Front. Chem. Sci. Eng. 16(6), 996–1002 (2022)

    Article  MATH  Google Scholar 

  39. Quinsaat, J.E.Q., Alexandru, M., Nüesch, F.A., et al.: Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. J. Mater. Chem. A 3(28), 14675–14685 (2015)

    Article  MATH  Google Scholar 

  40. Kellaris, N., Gopaluni Venkata, V., Smith, G.M., et al.: Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3(14), eaar3276 (2018)

    Google Scholar 

  41. Acome, E., Mitchell, S.K., Morrissey, T., et al.: Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359(6371), 61–65 (2018)

    Article  MATH  Google Scholar 

  42. Tang, W., Zhong, Y., Xu, H., et al.: Self-protection soft fluidic robots with rapid large-area self-healing capabilities. Nat. Commun. 14(1), 6430 (2023)

    Article  MATH  Google Scholar 

  43. Racles, C., Alexandru, M., Bele, A., et al.: Chemical modification of polysiloxanes with polar pendant groups by co-hydrosilylation. RSC Adv. 4(71), 37620–37628 (2014)

    Article  Google Scholar 

  44. Galantini, F., Bianchi, S., Castelvetro, V., et al.: Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance. Smart Mater. Struct. 22(5), 055025 (2013)

    Article  Google Scholar 

  45. Huang, X., Xie, L., Hu, Z., et al.: Influence of BaTiO3 nanoparticles on dielectric, thermophysical and mechanical properties of ethylene-vinyl acetate elastomer/BaTiO3 microcomposites. IEEE Trans. Dielectr. Electr. Insul. 18(2), 375–383 (2011)

    Article  Google Scholar 

  46. Huang, X., Jiang, P.: Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27(3), 546–554 (2015)

    Article  MATH  Google Scholar 

  47. Wang, X., Mitchell, S.K., Rumley, E.H., et al.: High-strain peano-HASEL actuators. Adv. Func. Mater. 30(7), 1908821 (2020)

    Article  Google Scholar 

  48. Tang, W., Lin, Y., Zhang, C., et al.: Self-contained soft electrofluidic actuators. Sci. Adv. 7(34), eabf8080 (2021)

    Google Scholar 

  49. He, D., Wang, Y., Chen, X., et al.: Core–shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement. Compos. Part A Appl. Sci. Manuf. 93, 137–143 (2017)

    Google Scholar 

  50. Qiu, Y., Zhang, E., Plamthottam, R., et al.: Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc. Chem. Res. 52(2), 316–325 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful for financial support from the National Natural Science Foundation of China (No. 52375293), the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission (No. LASAT-2021-05), the Open Fund of Key Laboratory of Advanced Technology for Small and Medium-sized UAVs (No. XCA22054-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Y., He, Q., Xie, L., Yang, C., Ni, S. (2025). Design and Performance Testing of Electro-fluidic Soft Actuator. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15203. Springer, Singapore. https://doi.org/10.1007/978-981-96-0795-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0795-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0794-5

  • Online ISBN: 978-981-96-0795-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics