Skip to main content

A General Collision-Free Scheme for Redundant Manipulators

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15203))

Included in the following conference series:

  • 5 Accesses

Abstract

Considering manipulation tasks of redundant manipulators in complex environments, this article presents a general scheme that integrates model-based obstacle avoidance, Cartesian space trajectory tracking, and joint physical limit avoidance. Based on the minimum velocity norm scheme, the proposed scheme combines the escape velocity-based obstacle avoidance with Gilbert-Johnson-Keerthi (GJK) algorithm-based critical point detection, empowering the manipulator with model-based obstacle avoidance capabilities. Additionally, a multi-critical point restriction set is proposed, improving the success rate of obstacle avoidance in extreme situations. Moreover, the scheme introduces sampling time to joint physical constraints, ensuring that the physical limits of joints are not violated at the next sampling time. Finally, comparative experiments and simulations are conducted to verify the feasibility and the potential of practical application of the proposed scheme.

Z. Xie, W. Sun and B. Ma—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghodsian, N., et al.: Toward designing an integration architecture for a mobile manipulator in production systems: industry 4.0. Procedia CIRP 109, 443–448 (2022)

    Google Scholar 

  2. Bouteraa, Y., Abdallah, I.B., Ghommam, J.: Task-space region-reaching control for medical robot manipulator. Comput. Electr. Eng. 67, 629–645 (2018)

    Article  MATH  Google Scholar 

  3. Stückler, J., Schwarz, M., Behnke, S.: Mobile manipulation, tool use, and intuitive interaction for cognitive service robot Cosero. Front. Robot. AI 3 (2016)

    Google Scholar 

  4. Papadopoulos, E., Aghili, F., Ma, O., Lampariello, R.: Robotic manipulation and capture in space: a survey. Front. Robot. AI 8 (2021)

    Google Scholar 

  5. Abdelmaksoud, S.I., Al-Mola, M.H., Abro, G.E.M., Asirvadam, V.S.: In-depth review of advanced control strategies and cutting-edge trends in robot manipulators: analyzing the latest developments and techniques. IEEE Access 1 (2024)

    Google Scholar 

  6. Noreen, I., Khan, A., Habib, Z.: Optimal path planning using RRT* based approaches: a survey and future directions. Int. J. Adv. Comput. Sci. Appl. 7 (2016)

    Google Scholar 

  7. Sandakalum, T., Ang, M.H.: Motion planning for mobile manipulators—a systematic review. Machines 10, 97 (2022)

    Article  MATH  Google Scholar 

  8. Kingston, Z., Moll, M., Kavraki, L.E.: Sampling-based methods for motion planning with constraints. Annu. Rev. Control Robot. Auton. Syst. 1, 159–185 (2018)

    Article  MATH  Google Scholar 

  9. Madhevan, B., Sreekumar, M.: Identification of probabilistic approaches and map-based navigation in motion planning for mobile robots. Sadhana SāDhanā 43 (2018)

    Google Scholar 

  10. Zhang, Y., Wang, J.: Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34, 752–759 (2004)

    Google Scholar 

  11. Guo, D., Zhang, Y.: Acceleration-Level Inequality-Based MAN scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans. Ind. Electron. 61, 6903–6914 (2014)

    Article  MATH  Google Scholar 

  12. Chen, D., Zhang, Y.: Minimum jerk norm scheme applied to obstacle avoidance of redundant robot arm with jerk bounded and feedback control. IET Control Theory Appl. 10, 1896–1903 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4, 193–203 (1988)

    Article  MATH  Google Scholar 

  14. Hanwell, M.D., Martin, K.M., Chaudhary, A., Avila, L.S.: The visualization toolkit (VTK): rewriting the rendering code for modern graphics cards. SoftwareX 1–2, 9–12 (2015)

    Article  Google Scholar 

  15. Kong, X., Everett, H., Toussaint, G.: The Graham scan triangulates simple polygons. Pattern Recognit. Lett. 11, 713–716 (1990)

    Article  MATH  Google Scholar 

  16. Roos, C., Terlaky, T., Vial, J.-P.: Interior point methods for linear optimization (2005)

    Google Scholar 

  17. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tai, X.C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 502–513. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02256-2_42

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoshi Cao or Boyu Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Z. et al. (2025). A General Collision-Free Scheme for Redundant Manipulators. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15203. Springer, Singapore. https://doi.org/10.1007/978-981-96-0795-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0795-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0794-5

  • Online ISBN: 978-981-96-0795-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics