Skip to main content

Wolf Pack Algorithm: An Overview

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15203))

Included in the following conference series:

  • 11 Accesses

Abstract

Heuristic algorithms have evolved rapidly, leading to numerous theoretical breakthroughs and wide applications in various fields. Swarm intelligence algorithms, as an important branch of heuristic algorithms, have attracted significant attention from researchers. With the expansion of application scenarios and increasing problem complexity, swarm intelligence algorithms have faced considerable challenges in dealing with high-dimensional, multimodal complex function optimization. As a novel swarm intelligence algorithm, the Wolf Pack Algorithm (WPA) has emerged as an efficient tool for addressing such issues due to its unique swarm characteristics and the mechanism that simulates wolf pack hunting behavior. A systematic review and summary of WPA from the perspectives of biological characteristics and algorithm principles are of paramount significance. Subsequently, a comparison between WPA and commonly used swarm intelligence algorithms is conducted. Then, the research progress of WPA is discussed in terms of both theory and application. Finally, inadequacies of WPA are explored, and the future prospects are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, America (1992)

    Book  MATH  Google Scholar 

  2. Beni. G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Robots and Biological Systems: Towards a New Bionics. Springer, Berlin, Heidelberg (1993)

    Google Scholar 

  3. Beni. G.: Swarm intelligence. In: Complex Social and Behavioral Systems: Game Theory and Agent-Based Models, pp. 791–818 (2020)

    Google Scholar 

  4. Shaikh, P.W., El-Abd, M., Khanafer, M., et al.: A review on swarm intelligence and evolutionary algorithms for solving the traffic signal control problem. IEEE Trans. Intell. Transp. Syst. 23(1), 48–63 (2020)

    Article  MATH  Google Scholar 

  5. SS. V. C.: A multi-agent ant colony optimization algorithm for effective vehicular traffic management. In: 2020 International Conference on Swarm Intelligence (ICSI), pp. 640–647. Springer (2020)

    Google Scholar 

  6. Pan, Q.K., Wang, L., Mao, K., et al.: An effective artificial bee colony algorithm for a real-world hybrid Flowshop problem in steelmaking process. IEEE Trans. Autom. Sci. Eng. 10(2), 307–322 (2012)

    Article  MATH  Google Scholar 

  7. Wu, X., Shen, X., Li, C.: The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously. Comput. Ind. Eng. 135, 1004–1024 (2019)

    Article  MATH  Google Scholar 

  8. Duan, H.B., Shao, S., Su, B.W., et al.: New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci. Chin. Technol. Sci. 53, 2025–2031 (2010)

    Article  MATH  Google Scholar 

  9. Yu, Y.P., Liu, J.C., Wei, C.: Hawk and pigeon’s intelligence for UAV swarm dynamic combat game via competitive learning pigeon-inspired optimization. Sci. Chin. Technol. Sci. 65(5), 1072–1086 (2022)

    Article  MATH  Google Scholar 

  10. Zhang, B., Duan, H.: Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 97–107 (2015)

    Article  Google Scholar 

  11. Sharma, S., Jain, R.: EACO: an enhanced ant colony optimization algorithm for task scheduling in cloud computing. Int. J. Secur. Appl. 13(4), 91–100 (2019)

    MATH  Google Scholar 

  12. Xing, H., Zhu, J., Qu, R., et al.: An ACO for energy-efficient and traffic-aware virtual machine placement in cloud computing. Swarm Evol. Comput. 68, 101012 (2022)

    Article  MATH  Google Scholar 

  13. Babar, M., Khan, M.S., Din, A., et al.: Intelligent computation offloading for IoT applications in scalable edge computing using artificial bee colony optimization. Complexity 2021(1), 5563531 (2021)

    Article  MATH  Google Scholar 

  14. Li, J., Han, Y.: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system. Cluster Comput. 23, 2483–2499 (2020)

    Article  MATH  Google Scholar 

  15. Wang, H., Zhao, J.: A novel high-level target navigation pigeon-inspired optimization for global optimization problems. Appl. Intell. 53(12), 14918–14960 (2023)

    Article  Google Scholar 

  16. Zhu, Q., Wu, H., Li, N., et al.: A chaotic disturbance wolf pack algorithm for solving ultrahigh-dimensional complex functions. Complexity 2021(1), 6676934 (2021)

    Article  Google Scholar 

  17. Peng, Q., Wu, H.S., Zhu, Q.: An interactive wandering Wolf Pack algorithm for solving high-dimensional complex functions. In: 11th International Conference on Information Science and Technology (ICIST), pp. 344–355. IEEE (2021)

    Google Scholar 

  18. Kaya, E., Gorkemli, B., Akay, B., et al.: A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems. Eng. Appl. Artif. Intell. 115, 105311 (2022)

    Article  MATH  Google Scholar 

  19. Rahman, M.A., Sokkalingam, R., Othman, M., et al.: Nature-inspired metaheuristic techniques for combinatorial optimization problems: overview and recent advances. Mathematics 9(20), 2633 (2021)

    Article  MATH  Google Scholar 

  20. Wang, Y., Han, Z.: Ant colony optimization for traveling salesman problem based on parameters optimization. Appl. Soft Comput. 107, 107439 (2021)

    Article  MATH  Google Scholar 

  21. Zhang, D., You, X., Liu, S., et al.: Dynamic multi-role adaptive collaborative ant colony optimization for robot path planning. IEEE Access 8, 129958–129974 (2020)

    Article  Google Scholar 

  22. Cui, Z., Zhao, L., Zeng, Y., et al.: Novel PIO algorithm with multiple selection strategies for many-objective optimization problems. Complex Syst. Model. Simul. 1(4), 291–307 (2021)

    Article  MATH  Google Scholar 

  23. Qiu, H., Duan, H.: A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inf. Sci. 509, 515–529 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mech, L.D.: The wolf: the ecology and behavior of an endangered species. J. Wildl. Manag. 52(3). https://doi.org/10.2307/3799810(1971)

  25. Yang, C., Tu, X., Chen, J.: Algorithm of marriage in honey bees optimization based on the wolf pack search. In: 2007 International Conference on Intelligent Pervasive Computing (IPC), pp. 462–467. IEEE (2007)

    Google Scholar 

  26. Liu, C., Yan, X., Liu, C., Wu, H.: The wolf colony algorithm and its application. Chin. J. Electron. 20(2), 212–216 (2011)

    MATH  Google Scholar 

  27. Zhou, Q., Zhou, Y.Q.: Wolf colony search algorithm based on leader strategy. Appl. Res. Comput. 30(09), 2629–2632 (2013) (In Chinese)

    Google Scholar 

  28. Wu, H.S., Zhang, F.M., Wu, L.S.: New swarm intelligence algorithm-wolf pack algorithm. Syst. Eng. Electron. 35(11), 2430–2438 (2013) (In Chinese)

    Google Scholar 

  29. Wu. H., Zhang. F.: A uncultivated wolf pack algorithm for high-dimensional functions and its application in parameters optimization of PID controller. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1477–1482. IEEE (2014)

    Google Scholar 

  30. Li, G.L., Wei, Z.H., Xu, L.: Wolf pack algorithm based on modified search strategy. J. Comput. Appl. 35(06), 1633–1636+1687 (2015)

    MATH  Google Scholar 

  31. Hui, X.B., Guo, Q., Wu, P.P.: An improved wolf pack algorithm. Control Decis. 32(07), 1163–1172 (2017) (In Chinese)

    Google Scholar 

  32. Wang, Y.X., et al.: Research of improved wolf pack algorithm based on differential evolution. Appl. Res. Comput. 36(08), 2305–2310 (2019) (In Chinese)

    Google Scholar 

  33. Escobedo, R., et al.: Group size, individual role differentiation and effectiveness of cooperation in a homogeneous group of hunters. J. R. Soc. Interface 11(95), 20140204 (2014)

    Article  MATH  Google Scholar 

  34. Muro, C., et al.: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Proc. 88(3), 192–197 (2011)

    Article  MATH  Google Scholar 

  35. Chen, C., Xuan, S.B., Lei, H.X.: Image segmentation based on wolf pack algorithm and 2D maximum entropy. Comput. Eng. 44(01), 233–237 (2018) (In Chinese)

    Google Scholar 

  36. Wachs-Lopes, G.A., Santos, R.M., Saito, N.T., et al.: Recent nature-inspired algorithms for medical image segmentation based on Tsallis statistics. Commun. Nonlinear Sci. Numerical Simul. 88, 105256 (2020)

    Google Scholar 

  37. Wang, J.Q., Jia, Y.Y., Xiao, Q.Y.: Application of wolf pack search algorithm to optimal operation of hydropower station. Adv. Sci. Technol. Water Res. 35(03), 1–4+65 (2015) (In Chinese)

    Google Scholar 

  38. Du, J., Zhang, Z., Li, M., et al.: Retracted Article: optimal scheduling of integrated energy system based on improved grey wolf optimization algorithm. Sci. Rep. 12(1), 7095 (2022)

    Article  MATH  Google Scholar 

  39. Ye, Y., Zhang, H.Z.: Wolf pack algorithm for multi-depot vehicle routing problem. Appl. Res. Comput. 34(09), 2590–2593 (2017) (In Chinese)

    Google Scholar 

  40. Fang, Y.J., Tang, M.: Three-dimensional routing optimization for AVS/RS’s composite operation. Comput. Integr. Manuf. Syst. 21(03), 702–708 (2015) (In Chinese)

    Google Scholar 

  41. Wang, F.Z.: Automatic segmentation of FCM image based on the optimization algorithm of wolf swarm pack. Control Eng. Chin. 25(09), 1727–1732 (2018) (In Chinese)

    Google Scholar 

  42. Jiao, R.F., Fan, J.L.: Novel generalized entropy image segmentation based on improved wolf pack algorithm. Appl. Res. Comput. 36(10), 3142–3144+3167 (2019) (In Chinese)

    Google Scholar 

  43. Menassel, R., Nini, B., Mekhaznia, T.: An improved fractal image compression using wolf pack algorithm. J. Exp. Theor. Artif. Intell. 30(3), 429–439 (2018)

    Article  Google Scholar 

  44. Wu, H.S., et al.: A binary wolf pack algorithm for solving 0-1 knapsack problem. Syst. Eng. Electr. 36(08), 1660–1667 (2014) (In Chinese)

    Google Scholar 

  45. Wu. H. S., et al.: Improved binary wolf pack algorithm for solving multidimensional knapsack problem. Syst. Eng. Electron. 37(05), 1084–1091 (2015) (In Chinese)

    Google Scholar 

  46. Zhou, X.H., Yang, K., Wang, X.Y.: Application of wolf pack search algorithm in optimal load dispatching of hydropower station. Water Pow. 43(02), 81–84 (2017) (In Chinese)

    Google Scholar 

  47. Li, L., Lai, X.D., Chen, X.M.: Research on inner-plant optimal operation of hydropower station based on improved wolf swarm algorithm. Water Res. Pow. 37(06), 164–168 (2019) (In Chinese)

    Google Scholar 

  48. Liu, Y.L., et al.: Track planning for unmanned aerial vehicles based on wolf pack algorithm. J. Syst. Simul. 27(08), 1838–1843 (2015) (In Chinese)

    Google Scholar 

  49. Zhang, D.F., Duan, H.B., Fan, Y.M.: UAV swarm containment control inspired by spatial interaction mechanism of wolf-pack foraging. Sci. Sin. (Technologica) 52(10), 1555–1570. (In Chinese)

    Google Scholar 

  50. Jiang, C.S.: Research on multi UAV path planning system based on improved wolf swarm algorithm. Nanjing University Of Information Science And Technology. https://doi.org/10.27248/d.cnki.gnjqc.2022.000881 (2022) (In Chinese)

  51. Chen, Y., Yang, D., Yu, J.: Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2853–2872 (2018)

    Article  MATH  Google Scholar 

  52. Zhao, Y.M., Zhang, J.L.: Clustering based task allocation algorithm for unmanned aerial vehicle wolf pack. AI-View 4, 31–39+47 (2021) (In Chinese)

    Google Scholar 

  53. Wang, Z, Zhang, J.: A task allocation algorithm for a swarm of unmanned aerial vehicles based on bionic wolf pack method. Knowl.-Based Syst. 250, 109072 (2022)

    Google Scholar 

  54. Fan, H.: UAV path planning method based on improved wolf pack algorithm. J. Electron. Inf. Sci. 8(5), 31–37 (2023)

    MATH  Google Scholar 

Download references

Acknowledgment

This research was supported by National Natural Science Foundation (9224830038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, W., Wang, Y., Xu, P., Qiu, T., Yan, T., Wang, Z. (2025). Wolf Pack Algorithm: An Overview. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15203. Springer, Singapore. https://doi.org/10.1007/978-981-96-0795-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0795-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0794-5

  • Online ISBN: 978-981-96-0795-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics