Skip to main content

Double Closed-Loop Trajectory Tracking Control Strategy for Wheeled Mobile Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15204))

Included in the following conference series:

  • 5 Accesses

Abstract

The traditional control method of wheeled robot has the problem that system is unstable due to the inconsistency between the actual state and the target state. Therefore, this paper proposes a double closed-loop control strategy based on trajectory tracking considering global stability. Initially, a comprehensive kinematics model is formulated. Based on the kinematics model of the system, the controller is designed to ensure the Lipchitz condition of position tracking closed-loop system, so as to ensure that stability of the system. Subsequently, the stability of the controller is validated through the application of Lyapunov stability theory. Finally, the effectiveness of the control strategy is verified by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, K., Zhang, T.: Deep reinforcement learning based mobile robot navigation: a review. Tsinghua Sci. Technol. 26(5), 674–691 (2021)

    Article  MATH  Google Scholar 

  2. Lim, J., Lee, H., Choi, J.: Nonlinear model predictive control with cost function scheduling for a wheeled mobile robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5664–5670 (2022)

    Google Scholar 

  3. Xie, Y., Zhang, X., Meng, W.: Coupled fractional-order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot. ISA Trans. 108, 282–294 (2021)

    Article  MATH  Google Scholar 

  4. Dan, L., Meiqi, T., Junjie, F.: Robust adaptive trajectory tracking for wheeled mobile robots based on gaussian process regression. Syst. Control Lett. 163, 105210 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ibrahim, A.E.S.B.: Wheeled mobile robot trajectory tracking using sliding mode control. J. Comput. Sci. 12(1), 48–55 (2016)

    Google Scholar 

  6. Bozek, P., Karavaev, Y.L., Ardentov, A.A., Yefremov, K.S.: Neural network control of a wheeled mobile robot based on optimal trajectories. Int. J. Adv. Robot. Syst. 17(2), 3310–3317 (2020)

    Google Scholar 

  7. Martins, F.N., Celeste, W.C., Carelli, R.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16(11), 1354–1363 (2008)

    Article  MATH  Google Scholar 

  8. Cen, H., Singh, B.K.: Nonholonomic wheeled mobile robot trajectory tracking control based on improved sliding mode variable structure. Wirel. Commun. Mob. Comput. 21(10), 1–9 (2021)

    Google Scholar 

  9. Azzabi, A., Nouri, K.: Design of a robust tracking controller for a nonholonomic mobile robot based on sliding mode with adaptive gain. Int. J. Adv. Rob. Syst. 18(1), 1729881420987082 (2021)

    Article  MATH  Google Scholar 

  10. Yue, M., Wang, S., Yang, X.L.: Backstepping-based robust control for wmr with a boundary in prior for the uncertain rolling resistance. Int. J. Comput. Commun. Control 9(3), 348 (2014)

    Article  MATH  Google Scholar 

  11. Hanzhen, X., et al.: Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Trans. Ind. Electron. 64(1), 505–516 (2017)

    Article  MATH  Google Scholar 

  12. Zhang, K., Chen, J., Li, Y., Zhang, X.: Visual tracking and depth estimation of mobile robots without desired velocity information. IEEE Trans. Cybern. 99

    Google Scholar 

  13. Songyi, D., Jixia, H., Rui, G., Shengchuan, L., Qing, W.: Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots. Int. J. Fuzzy Syst. 21, 2032–2042 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, C., Li, X., Yang, X.: Extendedstate observer-based sliding mode control of an omnidirectional mobile robot with frictioncompensation. IEEE Trans. Ind. Electron. 66(12), 9480–9489 (2019)

    Article  MATH  Google Scholar 

  15. Ailon, A., Zohar, I.: Controllers for trajectory tracking and string-like formation in wheeled mobile robots with bounded inputs. In: Melecon IEEE Mediterranean Electrotechnical Conference, 2010

    Google Scholar 

  16. Dian, S., Han, J., Guo, R.: Double closed-loopgeneral type-2fuzzy sliding model control for trajectory tracking of wheeled mobile robots. Int. J. Fuzzy Syst. 21(7), 2032–2042 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wei, Z., Liu, R. (2025). Double Closed-Loop Trajectory Tracking Control Strategy for Wheeled Mobile Robot. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15204. Springer, Singapore. https://doi.org/10.1007/978-981-96-0798-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0798-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0797-6

  • Online ISBN: 978-981-96-0798-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics