Skip to main content

Cost-Aware Dynamic Cloud Workflow Scheduling Using Self-attention and Evolutionary Reinforcement Learning

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15405))

Included in the following conference series:

  • 305 Accesses

Abstract

As a key cloud management problem, Cost-aware Dynamic Multi-Workflow Scheduling (CDMWS) aims to assign virtual machine (VM) instances to execute tasks in workflows so as to minimize the total costs, including both the penalties for violating Service Level Agreement (SLA) and the VM rental fees. Powered by deep neural networks, Reinforcement Learning (RL) methods can construct effective scheduling policies for solving CDMWS problems. Traditional policy networks in RL often use basic feedforward architectures to separately determine the suitability of assigning any VM instances, without considering all VMs simultaneously to learn their global information. This paper proposes a novel self-attention policy network for cloud workflow scheduling (SPN-CWS) that captures global information from all VMs. We also develop an Evolution Strategy-based RL (ERL) system to train SPN-CWS reliably and effectively. The trained SPN-CWS can effectively process all candidate VM instances simultaneously to identify the most suitable VM instance to execute every workflow task. Comprehensive experiments show that our method can noticeably outperform several state-of-the-art algorithms on multiple benchmark CDMWS problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://aws.amazon.com/ec2/pricing/on-demand/.

  2. 2.

    ES-RL and SPN-CWS are trained with \(\gamma = 5\) and tested with \(\gamma \in \{1.00, 1.25, 1.50,\) \(1.75, 2.00, 2.25\}\) to evaluate their performance under tight SLA deadline coefficients.

  3. 3.

    https://github.com/openai.

References

  1. Ajani, O.S., Mallipeddi, R.: Adaptive evolution strategy with ensemble of mutations for reinforcement learning. Knowl.-Based Syst. 245, 108624 (2022)

    Article  Google Scholar 

  2. Arabnejad, V., Bubendorfer, K., Ng, B.: Budget and deadline aware e-science workflow scheduling in clouds. IEEE Trans. Parallel Distrib. Syst. 30(1), 29–44 (2018)

    Article  Google Scholar 

  3. Chen, G., Qi, J., Sun, Y., Hu, X., Dong, Z., Sun, Y.: A collaborative scheduling method for cloud computing heterogeneous workflows based on deep reinforcement learning. Futur. Gener. Comput. Syst. 141, 284–297 (2023)

    Article  Google Scholar 

  4. Chen, H., Zhu, X., Liu, G., Pedrycz, W.: Uncertainty-aware online scheduling for real-time workflows in cloud service environment. IEEE Trans. Serv. Comput. 14(4), 1167–1178 (2018)

    Article  Google Scholar 

  5. Dong, T., Xue, F., Xiao, C., Zhang, J.: Workflow scheduling based on deep reinforcement learning in the cloud environment. J. Ambient. Intell. Humaniz. Comput. 12(12), 10823–10835 (2021)

    Article  Google Scholar 

  6. Escott, K.-R., Ma, H., Chen, G.: Genetic programming based hyper heuristic approach for dynamic workflow scheduling in the cloud. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020. LNCS, vol. 12392, pp. 76–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59051-2_6

    Chapter  Google Scholar 

  7. Faragardi, H.R., Sedghpour, M.R.S., Fazliahmadi, S., Fahringer, T., Rasouli, N.: Grp-heft: a budget-constrained resource provisioning scheme for workflow scheduling in IAAS clouds. IEEE Trans. Parallel Distrib. Syst. 31(6), 1239–1254 (2019)

    Article  Google Scholar 

  8. Hoseiny, F., Azizi, S., Shojafar, M., Tafazolli, R.: Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system. ACM Trans. Internet Technol. 21(4), 1–21 (2021)

    Article  Google Scholar 

  9. Huang, V., Wang, C., Ma, H., Chen, G., Christopher, K.: Cost-aware dynamic multi-workflow scheduling in cloud data center using evolutionary reinforcement learning. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) ICSOC 2022. LNCS, vol. 13740, pp. 449–464. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_32

    Chapter  Google Scholar 

  10. Jayanetti, A., Halgamuge, S., Buyya, R.: Multi-agent deep reinforcement learning framework for renewable energy-aware workflow scheduling on distributed cloud data centers. IEEE Trans. Parallel Distrib. Syst. (2024)

    Google Scholar 

  11. Khadka, S., Tumer, K.: Evolution-guided policy gradient in reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  12. Li, H., Huang, J., Wang, B., Fan, Y.: Weighted double deep q-network based reinforcement learning for bi-objective multi-workflow scheduling in the cloud. Clust. Comput. 25(2), 751–768 (2022)

    Article  Google Scholar 

  13. Liu, J., et al.: Online multi-workflow scheduling under uncertain task execution time in IAAS clouds. IEEE Trans. Cloud Comput. 9(3), 1180–1194 (2019)

    Article  Google Scholar 

  14. Masdari, M., ValiKardan, S., Shahi, Z., Azar, S.I.: Towards workflow scheduling in cloud computing: a comprehensive analysis. J. Netw. Comput. Appl. 66, 64–82 (2016)

    Article  Google Scholar 

  15. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arxiv 2017. arXiv preprint arXiv:1703.03864 (2017)

  16. Silver, E.A.: An overview of heuristic solution methods. J. Oper. Res. Soc. 55(9), 936–956 (2004)

    Article  Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Wang, Y., et al.: Multi-objective workflow scheduling with deep-q-network-based multi-agent reinforcement learning. IEEE access 7, 39974–39982 (2019)

    Article  Google Scholar 

  19. Wu, L., Garg, S.K., Versteeg, S., Buyya, R.: Sla-based resource provisioning for hosted software-as-a-service applications in cloud computing environments. IEEE Trans. Serv. Comput. 7(3), 465–485 (2013)

    Article  Google Scholar 

  20. Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y., Wen, J.: Deadline-constrained cost optimization approaches for workflow scheduling in clouds. IEEE Trans. Parallel Distrib. Syst. 28(12), 3401–3412 (2017)

    Article  Google Scholar 

  21. Xu, M., et al.: Genetic programming for dynamic workflow scheduling in fog computing. IEEE Trans. Serv. Comput. 16(4), 2657–2671 (2023)

    Article  Google Scholar 

  22. Yang, Y., Chen, G., Ma, H., Hartmann, S., Zhang, M.: Dual-tree genetic programming with adaptive mutation for dynamic workflow scheduling in cloud computing. IEEE Trans. Evol. Comput. (2024)

    Google Scholar 

  23. Yang, Y., Chen, G., Ma, H., Zhang, M.: Dual-tree genetic programming for deadline-constrained dynamic workflow scheduling in cloud. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds.) Service-Oriented Computing - ICSOC 2022. Lecture Notes in Computer Science, vol. 13740, pp. 433–448. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20984-0_31

    Chapter  Google Scholar 

  24. Yang, Y., Chen, G., Ma, H., Zhang, M., Huang, V.: Budget and SLA aware dynamic workflow scheduling in cloud computing with heterogeneous resources. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 2141–2148. IEEE (2021)

    Google Scholar 

  25. Youn, C.H., Chen, M., Dazzi, P.: Cloud broker and cloudlet for workflow scheduling. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5071-8

    Book  Google Scholar 

  26. Zhou, B., Cheng, L.: Deep reinforcement learning-based scheduling for same day delivery with a dynamic number of drones. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds.) ICSOC 2023. LNCS, vol. 14419, pp. 34–41. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48421-6_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y., Chen, G., Ma, H., Zhang, M. (2025). Cost-Aware Dynamic Cloud Workflow Scheduling Using Self-attention and Evolutionary Reinforcement Learning. In: Gaaloul, W., Sheng, M., Yu, Q., Yangui, S. (eds) Service-Oriented Computing. ICSOC 2024. Lecture Notes in Computer Science, vol 15405. Springer, Singapore. https://doi.org/10.1007/978-981-96-0808-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0808-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0807-2

  • Online ISBN: 978-981-96-0808-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics