Skip to main content

Inter-Modal Shifting and Intra Adaptation for Multimodal Sentiment Analysis

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15391))

Included in the following conference series:

  • 274 Accesses

Abstract

Multimodal sentiment analysis(MSA) aims to recognize human emotions by integrating information from multiple modalities. Previous approaches to modality decomposition for obtaining common and private representations often overlooked the fact that the interactions between modalities are actually independent, leading to inaccurate decomposed representations. To address this issue, we propose a method called Inter-Modal Shifting and Intra- Adaptation (ISIA) for the MSA task. Firstly, inter-modal shifting sequentially identifies a primary modality from all modalities and calculates the shifting magnitude relative to the other modalities within independent feature spaces, obtaining accurate common representations for each modality. Secondly, a gated attention mechanism, combined with the common representations, adaptively extracts private representation from the original modality representation. ISIA enables a more precise decomposition of modalities, enhancing the quality of both common and private representations. Experiments on two public benchmarks demonstrate that our ISIA outperforms state-of-the-art methods, confirming the model’s effectiveness. Our code is available at https://github.com/AnleKer/ISIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, J., Zhang, C., Hui, Y., Leng, D., Niu, Y., Song, Y., Gai, K.: Pepnet: Parameter and embedding personalized network for infusing with personalized prior information. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3795–3804 (2023)

    Google Scholar 

  2. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  Google Scholar 

  3. Hazarika, D., Zimmermann, R., Poria, S.: Misa: Modality-invariant and-specific representations for multimodal sentiment analysis. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1122–1131 (2020)

    Google Scholar 

  4. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of naacL-HLT. vol. 1, p. 2 (2019)

    Google Scholar 

  5. Lin, R., Hu, H.: Multimodal contrastive learning via uni-modal coding and cross-modal prediction for multimodal sentiment analysis. In: Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 511–523 (2022)

    Google Scholar 

  6. Lin, Z., Liang, B., Long, Y., Dang, Y., Yang, M., Zhang, M., Xu, R.: Modeling intra-and inter-modal relations: Hierarchical graph contrastive learning for multimodal sentiment analysis. In: Proceedings of the 29th International Conference on Computational Linguistics. vol. 29, pp. 7124–7135. Association for Computational Linguistics (2022)

    Google Scholar 

  7. Liu, Z., Shen, Y., Lakshminarasimhan, V.B., Liang, P.P., Zadeh, A.B., Morency, L.P.: Efficient low-rank multimodal fusion with modality-specific factors. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2247–2256 (2018)

    Google Scholar 

  8. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  9. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  10. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  11. Rahman, W., Hasan, M.K., Lee, S., Zadeh, A., Mao, C., Morency, L.P., Hoque, E.: Integrating multimodal information in large pretrained transformers. In: Proceedings of the Conference. Association for Computational Linguistics. Meeting. vol. 2020, p. 2359. NIH Public Access (2020)

    Google Scholar 

  12. Sun, T., Ni, J., Wang, W., Jing, L., Wei, Y., Nie, L.: General debiasing for multimodal sentiment analysis. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 5861–5869 (2023)

    Google Scholar 

  13. Swietojanski, P., Li, J., Renals, S.: Learning hidden unit contributions for unsupervised acoustic model adaptation. IEEE/ACM Trans. Audio Speech Lang. Process. 24(8), 1450–1463 (2016)

    Article  Google Scholar 

  14. Tsai, Y.H.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L.P., Salakhutdinov, R.: Multimodal transformer for unaligned multimodal language sequences. In: Proceedings of the Conference. Association for Computational Linguistics. Meeting. vol. 2019, p. 6558. NIH Public Access (2019)

    Google Scholar 

  15. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  16. Wang, Y., Shen, Y., Liu, Z., Liang, P.P., Zadeh, A., Morency, L.P.: Words can shift: Dynamically adjusting word representations using nonverbal behaviors. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 7216–7223 (2019)

    Google Scholar 

  17. Wu, Y., Lin, Z., Zhao, Y., Qin, B., Zhu, L.N.: A text-centered shared-private framework via cross-modal prediction for multimodal sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4730–4738 (2021)

    Google Scholar 

  18. Yang, D., Huang, S., Kuang, H., Du, Y., Zhang, L.: Disentangled representation learning for multimodal emotion recognition. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 1642–1651 (2022)

    Google Scholar 

  19. Yang, J., Yu, Y., Niu, D., Guo, W., Xu, Y.: Confede: Contrastive feature decomposition for multimodal sentiment analysis. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7617–7630 (2023)

    Google Scholar 

  20. Yu, W., Xu, H., Yuan, Z., Wu, J.: Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 10790–10797 (2021)

    Google Scholar 

  21. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1103–1114 (2017)

    Google Scholar 

  22. Zadeh, A., Liang, P.P., Mazumder, N., Poria, S., Cambria, E., Morency, L.P.: Memory fusion network for multi-view sequential learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

    Google Scholar 

  23. Zadeh, A., Zellers, R., Pincus, E., Morency, L.P.: Mosi: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. arXiv preprint arXiv:1606.06259 (2016)

  24. Zadeh, A.B., Liang, P.P., Poria, S., Cambria, E., Morency, L.P.: Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2236–2246 (2018)

    Google Scholar 

  25. Zhao, D., Han, D., Yuan, Y., Ning, B., Mengxiang, L., He, Z., Song, S.: Autograph: Enabling visual context via graph alignment in open domain multi-modal dialogue generation. In: ACM Multimedia 2024 (2024), https://openreview.net/forum?id=hZYk17jJaf

  26. Zhao, D., Han, D., Yuan, Y., Wang, C., Song, S.: Muse: A multi-scale emotional flow graph model for empathetic dialogue generation. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 491–507. Springer (2023)

    Google Scholar 

  27. Zhu, L., Zhu, Z., Zhang, C., Xu, Y., Kong, X.: Multimodal sentiment analysis based on fusion methods: A survey. Inform. Fusion 95, 306–325 (2023)

    Article  Google Scholar 

  28. Zhu, Y., Zhuang, F., Wang, D.: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 5989–5996 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, K., Han, D., Zhao, D., Li, J., Qiao, B., Wu, G. (2025). Inter-Modal Shifting and Intra Adaptation for Multimodal Sentiment Analysis. In: Sheng, Q.Z., et al. Advanced Data Mining and Applications. ADMA 2024. Lecture Notes in Computer Science(), vol 15391. Springer, Singapore. https://doi.org/10.1007/978-981-96-0847-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0847-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0846-1

  • Online ISBN: 978-981-96-0847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics