Skip to main content

PDC-FRS: Privacy-Preserving Data Contribution for Federated Recommender System

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15392))

Included in the following conference series:

  • 172 Accesses

Abstract

Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users’ privacy in on-device recommendations. In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server. While this rigid framework protects users’ raw data during training, it severely compromises the recommendation model’s performance due to the following reasons: (1) Due to the power law distribution nature of user behavior data, individual users have few data points to train a recommendation model, resulting in uploaded model updates that may be far from optimal; (2) As each user’s uploaded parameters are learned from local data, which lacks global collaborative information, relying solely on parameter aggregation methods such as FedAvg to fuse global collaborative information may be suboptimal. To bridge this performance gap, we propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee. Based on the shared but perturbed data, an auxiliary model is trained in parallel with the original federated recommendation process. This auxiliary model enhances FedRec by augmenting each user’s local dataset and integrating global collaborative information. To demonstrate the effectiveness of PDC-FRS, we conduct extensive experiments on two widely used recommendation datasets. The empirical results showcase the superiority of PDC-FRScompared to baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we focus on cross-user federated recommendation, where each client represents one user. Therefore, the concepts of user and client are interchangeable.

  2. 2.

    In this paper, we mainly focus on recommendation with implicit feedback.

  3. 3.

    https://grouplens.org/datasets/movielens/1m/.

  4. 4.

    https://jmcauley.ucsd.edu/data/amazon/.

References

  1. Ammad-Ud-Din, M., Ivannikova, E., Khan, S.A., Oyomno, W., Fu, Q., Tan, K.E., Flanagan, A.: Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019)

  2. Anelli, V.W., Deldjoo, Y., Di Noia, T., Ferrara, A., Narducci, F.: FedeRank: User Controlled Feedback with Federated Recommender Systems. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 32–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_3

    Chapter  Google Scholar 

  3. Arachchige, P.C.M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., Atiquzzaman, M.: Local differential privacy for deep learning. IEEE Internet Things J. 7(7), 5827–5842 (2019)

    Article  Google Scholar 

  4. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2020)

    Article  Google Scholar 

  5. Chen, L., Yuan, W., Chen, T., Ye, G., Hung, N.Q.V., Yin, H.: Adversarial item promotion on visually-aware recommender systems by guided diffusion. ACM Trans. Inf, Syst (2024)

    Book  Google Scholar 

  6. Chen, Z., Wang, S.: A review on matrix completion for recommender systems. Knowl. Inf. Syst. 64(1), 1–34 (2022)

    Article  Google Scholar 

  7. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM conference on recommender systems. pp. 191–198 (2016)

    Google Scholar 

  8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: Simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. pp. 639–648 (2020)

    Google Scholar 

  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web. pp. 173–182 (2017)

    Google Scholar 

  10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Krichene, W., Rendle, S.: On sampled metrics for item recommendation. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. pp. 1748–1757 (2020)

    Google Scholar 

  12. Li, T., Song, L., Fragouli, C.: Federated recommendation system via differential privacy. In: 2020 IEEE international symposium on information theory (ISIT). pp. 2592–2597. IEEE (2020)

    Google Scholar 

  13. Liang, F., Pan, W., Ming, Z.: Fedrec++: Lossless federated recommendation with explicit feedback. In: Proceedings of the AAAI conference on artificial intelligence. vol. 35, pp. 4224–4231 (2021)

    Google Scholar 

  14. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015)

    Article  Google Scholar 

  15. Luo, S., Xiao, Y., Song, L.: Personalized federated recommendation via joint representation learning, user clustering, and model adaptation. In: Proceedings of the 31st ACM international conference on information & knowledge management. pp. 4289–4293 (2022)

    Google Scholar 

  16. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07). pp. 94–103. IEEE (2007)

    Google Scholar 

  17. Muhammad, K., Wang, Q., O’Reilly-Morgan, D., Tragos, E., Smyth, B., Hurley, N., Geraci, J., Lawlor, A.: Fedfast: Going beyond average for faster training of federated recommender systems. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1234–1242 (2020)

    Google Scholar 

  18. Qu, L., Yuan, W., Zheng, R., Cui, L., Shi, Y., Yin, H.: Towards personalized privacy: User-governed data contribution for federated recommendation. arXiv preprint arXiv:2401.17630 (2024)

  19. Sun, Z., Xu, Y., Liu, Y., He, W., Jiang, Y., Wu, F., Cui, L.: A survey on federated recommendation systems. arXiv preprint arXiv:2301.00767 (2022)

  20. Wang, Q., Yin, H., Chen, T., Yu, J., Zhou, A., Zhang, X.: Fast-adapting and privacy-preserving federated recommender system. VLDB J. 31(5), 877–896 (2022)

    Article  Google Scholar 

  21. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval. pp. 165–174 (2019)

    Google Scholar 

  22. Wang, Z., Yu, J., Gao, M., Yuan, W., Ye, G., Sadiq, S., Yin, H.: Poisoning attacks and defenses in recommender systems: A survey (2024)

    Google Scholar 

  23. Wu, C., Wu, F., Cao, Y., Huang, Y., Xie, X.: Fedgnn: Federated graph neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925 (2021)

  24. Yang, L., Tan, B., Zheng, V.W., Chen, K., Yang, Q.: Federated recommendation systems. Federated Learning: Privacy and Incentive pp. 225–239 (2020)

    Google Scholar 

  25. Yin, H., Cui, B.: Spatio-temporal recommendation in social media. Springer (2016)

    Google Scholar 

  26. Yin, H., Qu, L., Chen, T., Yuan, W., Zheng, R., Long, J., Xia, X., Shi, Y., Zhang, C.: On-device recommender systems: A comprehensive survey. arXiv preprint arXiv:2401.11441 (2024)

  27. Yuan, W., Nguyen, Q.V.H., He, T., Chen, L., Yin, H.: Manipulating federated recommender systems: Poisoning with synthetic users and its countermeasures. arXiv preprint arXiv:2304.03054 (2023)

  28. Yuan, W., Qu, L., Cui, L., Tong, Y., Zhou, X., Yin, H.: Hetefedrec: Federated recommender systems with model heterogeneity. arXiv preprint arXiv:2307.12810 (2023)

  29. Yuan, W., Yang, C., Nguyen, Q.V.H., Cui, L., He, T., Yin, H.: Interaction-level membership inference attack against federated recommender systems. In: Proceedings of the ACM Web Conference 2023. pp. 1053–1062 (2023)

    Google Scholar 

  30. Yuan, W., Yang, C., Qu, L., Ye, G., Nguyen, Q.V.H., Yin, H.: Robust federated contrastive recommender system against model poisoning attack. arXiv preprint arXiv:2403.20107 (2024)

  31. Yuan, W., Yin, H., Wu, F., Zhang, S., He, T., Wang, H.: Federated unlearning for on-device recommendation. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. pp. 393–401 (2023)

    Google Scholar 

  32. Yuan, W., Yuan, S., Zheng, K., Nguyen, Q.V.H., Yin, H.: Manipulating visually-aware federated recommender systems and its countermeasures. arXiv preprint arXiv:2305.08183 (2023)

  33. Zaier, Z., Godin, R., Faucher, L.: Evaluating recommender systems. In: 2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution. pp. 211–217. IEEE (2008)

    Google Scholar 

  34. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021)

    Article  Google Scholar 

  35. Zhang, S., Yin, H., Chen, T., Huang, Z., Nguyen, Q.V.H., Cui, L.: Pipattack: Poisoning federated recommender systems for manipulating item promotion. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. pp. 1415–1423 (2022)

    Google Scholar 

  36. Zhang, S., Yuan, W., Yin, H.: Comprehensive privacy analysis on federated recommender system against attribute inference attacks. IEEE Transactions on Knowledge and Data Engineering (2023)

    Google Scholar 

  37. Zhang, Y., Ye, Q., Chen, R., Hu, H., Han, Q.: Trajectory data collection with local differential privacy. Proceedings of the VLDB Endowment 16(10), 2591–2604 (2023)

    Article  Google Scholar 

  38. Zheng, R., Qu, L., Cui, B., Shi, Y., Yin, H.: Automl for deep recommender systems: A survey. ACM Transactions on Information Systems 41(4), 1–38 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Tam Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Yuan, W., Qu, L., Nguyen, T.T. (2025). PDC-FRS: Privacy-Preserving Data Contribution for Federated Recommender System. In: Sheng, Q.Z., et al. Advanced Data Mining and Applications. ADMA 2024. Lecture Notes in Computer Science(), vol 15392. Springer, Singapore. https://doi.org/10.1007/978-981-96-0850-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0850-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0849-2

  • Online ISBN: 978-981-96-0850-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics