Abstract
Power-of-two cyclotomics is a popular choice when instantiating the BGV scheme because of its efficiency and compliance with the FHE standard. However, in power-of-two cyclotomics, the linear transformations in BGV bootstrapping cannot be decomposed into sub-transformations for acceleration with existing techniques. Thus, they can be highly time-consuming when the number of slots is large, degrading the advantage brought by the SIMD property of the plaintext space. By exploiting the algebraic structure of power-of-two cyclotomics, this paper derives explicit decomposition of the linear transformations in BGV bootstrapping into NTT-like sub-transformations, which are highly efficient to compute homomorphically. Moreover, multiple optimizations are made to evaluate homomorphic linear transformations, including modified BSGS algorithms, trade-offs between level and time, and specific simplifications for thin and general bootstrapping. We implement our method on HElib. With the number of slots ranging from 4096 to 32768, we obtain a 2.4x–55.1x improvement in bootstrapping throughput, compared to previous works or the naive approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A non-constant monic polynomial h(X) over \(\textsf {GR}(p^r;m)\) is a monic basic primitive polynomial if \(\bar{h}(X)\) is a primitive polynomial over \(\textsf {GF}(p^m)\).
References
Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption Security Standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November 2018)
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with Errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015). https://doi.org/10.1515/jmc-2015-0016
Alperin-Sheriff, J., Peikert, C.: Practical Bootstrapping in Quasilinear Time. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp. 1–20. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_1
Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N., Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov, Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan, V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library. Cryptology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.org/2022/915
Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., Vaikuntanathan, V.: Optimized homomorphic encryption solution for secure genome-wide association studies. BMC Medical Genomics 13(7), 83 (Jul 2020). https://doi.org/10.1186/s12920-020-0719-9
Bossuat, J.P., Troncoso-Pastoriza, J., Hubaux, J.P.: Bootstrapping for Approximate Homomorphic Encryption with Negligible Failure-Probability by Using Sparse-Secret Encapsulation. In: Ateniese, G., Venturi, D. (eds.) Applied Cryptography and Network Security. pp. 521–541. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_26
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic Encryption without Bootstrapping. ACM Trans. Comput. Theory 6(3) (jul 2014). https://doi.org/10.1145/2633600
Bruun, G.: z-transform DFT filters and FFT’s. IEEE Transactions on Acoustics, Speech, and Signal Processing 26(1), 56–63 (1978). https://doi.org/10.1109/TASSP.1978.1163036
Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Informatica 28(7), 693–701 (Jul 1991). https://doi.org/10.1007/BF01178683
Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Homomorphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp. 34–54. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_2
Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE Bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 315–337. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_12
Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosenberg, M.: Labeled PSI from Homomorphic Encryption with Reduced Computation and Communication. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. p. 1135–1150. CCS ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3460120.3484760
Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 19(90), 297–301 (1965), http://www.jstor.org/stable/2003354
Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/2012/144
Geelen, R.: Revisiting the slot-to-coefficient transformation for BGV and BFV. Cryptology ePrint Archive, Paper 2024/153 (2024). https://cic.iacr.org/i/1/3
Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On Polynomial Functions Modulo \(p^e\) and Faster Bootstrapping for Homomorphic Encryption. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 257–286. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_9
Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV Revisited. Journal of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/s00145-023-09454-6
Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. p. 169–178. STOC ’09, Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1536414.1536440
Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015. pp. 641–670. Springer Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25
Halevi, S., Shoup, V.: Faster Homomorphic Linear Transformations in HElib. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp. 93–120. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_4
Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https://eprint.iacr.org/2020/1481
Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV Revisited. Journal of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/s00145-023-09454-6
Han, K., Hhan, M., Cheon, J.H.: Improved Homomorphic Discrete Fourier Transforms and FHE Bootstrapping. IEEE Access 7, 57361–57370 (2019). https://doi.org/10.1109/ACCESS.2019.2913850
Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic Views of Vectorized Polynomial Multipliers – NTRU Prime. In: Pöpper, C., Batina, L. (eds.) Applied Cryptography and Network Security. pp. 24–46. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-54773-7_2
Kim, J., Seo, J., Song, Y.: Simpler and Faster BFV Bootstrapping for Arbitrary Plaintext Modulus from CKKS. Cryptology ePrint Archive, Paper 2024/109 (2024). https://www.sigsac.org/ccs/CCS2024/program/accepted-papers.html
Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023), ePFL-LDS, Tune Insight SA
Lee, D., Min, S., Song, Y.: Functional Bootstrapping for Packed Ciphertexts via Homomorphic LUT Evaluation. Cryptology ePrint Archive, Paper 2024/181 (2024), https://eprint.iacr.org/2024/181
Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J., Yoo, D., Kim, Y.S., No, J.S.: Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network. IEEE Access 10, 30039–30054 (2022). https://doi.org/10.1109/ACCESS.2022.3159694
Liu, Z., Wang, Y.: Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping. In: Chung, K., Sasaki, Y. (eds.) ASIACRYPT 2024. LNCS, vol. 15484, pp. 208–240. Springer, Cham (2024). https://doi.org/10.1007/978-981-96-0875-1_7
Ma, S., Huang, T., Wang, A., Wang, X.: Accelerating BGV Bootstrapping for Large p Using Null Polynomials over \(\mathbb{Z}_{p^e}\). In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp. 403–432. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-58723-8_14
Meyn, H.: Factorization of the Cyclotomic Polynomialx2n+ 1 over Finite Fields. Finite Fields and Their Applications 2(4), 439–442 (1996). https://doi.org/10.1006/ffta.1996.0026
Ng, L.K.L., Chow, S.S.M.: GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference. In: 30th USENIX Security Symposium (USENIX Security 21). pp. 2147–2164. USENIX Association (Aug 2021), https://www.usenix.org/conference/usenixsecurity21/presentation/ng
Okada, H., Player, R., Pohmann, S.: Homomorphic Polynomial Evaluation Using Galois Structure and Applications to BFV Bootstrapping. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT 2023. pp. 69–100. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-8736-8_3
Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023), microsoft Research, Redmond, WA
Wan, Z.: Lectures on Finite Fields and Galois Rings. G - Reference,Information and Interdisciplinary Subjects Series, World Scientific (2003), https://books.google.com.hk/books?id=uCSVbYMljNIC
Acknowledgments
We thank Mr. Robin Geelen at KU Leuven for identifying the issue with the capacity consumption in Table 5. We also thank the anonymous reviewers for their insightful comments that greatly improved this manuscript. The study is supported by the National Key R&D Program of China (2018YFA0704701, 2020YFA0309705), Shandong Key Research and Development Program (2020ZLYS09), the Major Scientific and Technological Innovation Project of Shandong, China (2019JZZY010133), the Major Program of Guangdong Basic and Applied Research (2019B030302008), Tsinghua University Dushi Program, and the Key Laboratory of Data Protection and Intelligent Management, Ministry of Education, Sichuan University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 International Association for Cryptologic Research
About this paper
Cite this paper
Ma, S., Huang, T., Wang, A., Wang, X. (2025). Faster BGV Bootstrapping for Power-of-Two Cyclotomics Through Homomorphic NTT. In: Chung, KM., Sasaki, Y. (eds) Advances in Cryptology – ASIACRYPT 2024. ASIACRYPT 2024. Lecture Notes in Computer Science, vol 15484. Springer, Singapore. https://doi.org/10.1007/978-981-96-0875-1_5
Download citation
DOI: https://doi.org/10.1007/978-981-96-0875-1_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0874-4
Online ISBN: 978-981-96-0875-1
eBook Packages: Computer ScienceComputer Science (R0)