Skip to main content

RD-Diff: RLTransformer -Based Diffusion Model with Diversity-Inducing Modulator for Human Motion Prediction

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15472))

Included in the following conference series:

  • 118 Accesses

Abstract

Human Motion Prediction (HMP) is crucial for human-robot collaboration, surveillance, and autonomous driving applications. Recently, diffusion models have shown promising progress due to their ease of training and realistic generation capabilities. To enhance both accuracy and diversity of the diffusion model in HMP, we present RD-Diff : RLTransformer -based Diffusion model with Diversity-inducing modulator. First, to improve transformer’s effectiveness on the frequency representation of human motion transformed by Discrete Cosine Transform (DCT), we introduce a novel Regulated Linear Transformer (RLTransformer ) with a specially designed linear-attention mechanism. Next, to further enhance the performance, we propose a Diversity-Inducing Modulator (DIM ) to generate noise-modulated observation conditions for a pretrained diffusion model. Experimental results show that our RD-Diff establishes a new state-of-the-art performance on both accuracy and diversity compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, H., Mascaro, E.V., Lee, D.: Can we use diffusion probabilistic models for 3d motion prediction? In: arXiv preprint arXiv:2302.14503 (2023)

  2. Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3d human motion prediction. In: 2021 International Conference on 3D Vision (3DV). pp. 565–574 (2021)

    Google Scholar 

  3. Aksan, E., Cao, P., Kaufmann, M., Hilliges, O.: Attention, please: A spatio-temporal transformer for 3d human motion prediction. arXiv preprint arXiv:2004.086922(3), 5 (2020)

  4. Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3d human motion prediction. In: 2021 International Conference on 3D Vision (3DV). pp. 565–574. IEEE (2021)

    Google Scholar 

  5. Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3d human motion modelling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7144–7153 (2019)

    Google Scholar 

  6. Aliakbarian, S., Saleh, F., Petersson, L., Gould, S., Salzmann, M.: Contextually plausible and diverse 3d human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11333–11342 (2021)

    Google Scholar 

  7. Aliakbarian, S., Saleh, F.S., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5223–5232 (2020)

    Google Scholar 

  8. Barquero, G., Escalera, S., Palmero, C.: Belfusion: Latent diffusion for behavior-driven human motion prediction. In: arXiv preprint arXiv:2211.14304 (2022)

  9. Barsoum, E., Kender, J., Liu, Z.: Hp-gan: Probabilistic 3d human motion prediction via gan. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1418–1427 (2018)

    Google Scholar 

  10. Barsoum, E., Kender, J., Liu, Z.: Hp-gan: Probabilistic 3d human motion prediction via gan. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 1418–1427 (2018)

    Google Scholar 

  11. Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a “best of many” sample objective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8485–8493 (2018)

    Google Scholar 

  12. Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a “best of many” sample objective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8485–8493 (2018)

    Google Scholar 

  13. Bouazizi, A., Holzbock, A., Kressel, U., Dietmayer, K., Belagiannis, V.: Motionmixer: Mlp-based 3d human body pose forecasting. In: arXiv preprint arXiv:2207.00499 (2022)

  14. Cai, H., Gan, C., Han, S.: Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition. arXiv preprint arXiv:2205.14756 (2022)

  15. Cai, H., Li, J., Hu, M., Gan, C., Han, S.: Efficientvit: Multi-scale linear attention for high-resolution dense prediction (2024)

    Google Scholar 

  16. Cai, Y., Huang, L., Wang, Y., Cham, T.-J., Cai, J., Yuan, J., Liu, J., Yang, X., Zhu, Y., Shen, X., Liu, D., Liu, J., Thalmann, N.M.: Learning Progressive Joint Propagation for Human Motion Prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14

  17. Cai, Y., Huang, L., Wang, Y., Cham, T.J., Cai, J., Yuan, J., Liu, J., Yang, X., Zhu, Y., Shen, X., et al.: Learning progressive joint propagation for human motion prediction. In: European Conference on Computer Vision. pp. 226–242. Springer (2020)

    Google Scholar 

  18. Cai, Y., Wang, Y., Zhu, Y., Cham, T.J., Cai, J., Yuan, J., Liu, J., Zheng, C., Yan, S., Ding, H., et al.: A unified 3d human motion synthesis model via conditional variational auto-encoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11645–11655 (2021)

    Google Scholar 

  19. Chen, L.H., Zhang, J., Li, Y., Pang, Y., Xia, X., Liu, T.: Humanmac: Masked motion completion for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 9544–9555 (October 2023)

    Google Scholar 

  20. Chiu, H.k., Adeli, E., Wang, B., Huang, D.A., Niebles, J.C.: Action-agnostic human pose forecasting. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1423–1432. IEEE (2019)

    Google Scholar 

  21. Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F.: Context-aware human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6992–7001 (2020)

    Google Scholar 

  22. Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion models in vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10850–10869 (2023). https://doi.org/10.1109/tpami.2023.3261988

    Article  Google Scholar 

  23. Cui, Q., Sun, H.: Towards accurate 3d human motion prediction from incomplete observations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4801–4810 (2021)

    Google Scholar 

  24. Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3d human motion prediction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 6519–6527 (2020)

    Google Scholar 

  25. Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11467–11476 (2021)

    Google Scholar 

  26. Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Diverse human motion prediction via gumbel-softmax sampling from an auxiliary space. In: Proceedings of the 30th ACM International Conference on Multimedia. pp. 5162–5171 (2022)

    Google Scholar 

  27. Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11467–11476 (2021)

    Google Scholar 

  28. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. In: Advances in Neural Information Processing Systems. vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  29. Dilokthanakul, N., Mediano, P.A., Garnelo, M., Lee, M.C., Salimbeni, H., Arulkumaran, K., Shanahan, M.: Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016)

  30. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4346–4354 (2015)

    Google Scholar 

  31. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE international conference on computer vision. pp. 4346–4354 (2015)

    Google Scholar 

  32. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)

    Google Scholar 

  33. Gu, C., Yu, J., Zhang, C.: Learning disentangled representations for controllable human motion prediction. Pattern Recogn. 146, 109998 (2024)

    Article  Google Scholar 

  34. Guo, W., Du, Y., Shen, X., Lepetit, V., Alameda-Pineda, X., Moreno-Noguer, F.: Back to mlp: A simple baseline for human motion prediction. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 4809–4819 (2023)

    Google Scholar 

  35. Gurumurthy, S., Kiran Sarvadevabhatla, R., Venkatesh Babu, R.: Deligan: Generative adversarial networks for diverse and limited data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 166–174 (2017)

    Google Scholar 

  36. Gurumurthy, S., Kiran Sarvadevabhatla, R., Venkatesh Babu, R.: Deligan: Generative adversarial networks for diverse and limited data. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 166–174 (2017)

    Google Scholar 

  37. Han, D., Pan, X., Han, Y., Song, S., Huang, G.: Flatten transformer: Vision transformer using focused linear attention (2023)

    Google Scholar 

  38. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems. vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  39. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence 36(7), 1325–1339 (2013)

    Google Scholar 

  40. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-rnn: Deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5308–5317 (2016)

    Google Scholar 

  41. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast autoregressive transformers with linear attention. In: International Conference on Machine Learning. pp. 5156–5165. PMLR (2020)

    Google Scholar 

  42. Khayam, S.A.: The discrete cosine transform (dct): theory and application. Michigan State University 114(1), 31 (2003)

    Google Scholar 

  43. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: arXiv preprint arXiv:1412.6980 (2014)

  44. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  45. Kundu, J.N., Gor, M., Babu, R.V.: Bihmp-gan: Bidirectional 3d human motion prediction gan. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 8553–8560 (2019)

    Google Scholar 

  46. Lee, M.L., Behdad, S., Liang, X., Zheng, M.: Task allocation and planning for product disassembly with human–robot collaboration. In: Robotics and Computer-Integrated Manufacturing. vol. 76, p. 102306 (2022)

    Google Scholar 

  47. Lee, M.L., Liu, W., Behdad, S., Liang, X., Zheng, M.: Robot-assisted disassembly sequence planning with real-time human motion prediction. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems. vol. 53, pp. 438–450 (2022)

    Google Scholar 

  48. Li, B., Tian, J., Zhang, Z., Feng, H., Li, X.: Multitask non-autoregressive model for human motion prediction. IEEE Trans. Image Process. 30, 2562–2574 (2020)

    Article  Google Scholar 

  49. Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3d skeleton-based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 214–223 (2020)

    Google Scholar 

  50. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Symbiotic graph neural networks for 3d skeleton-based human action recognition and motion prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

    Google Scholar 

  51. Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 214–223 (2020)

    Google Scholar 

  52. Li, R., Su, J., Duan, C., Zheng, S.: Linear attention mechanism: An efficient attention for semantic segmentation (2020), https://arxiv.org/abs/2007.14902

  53. Li, Z., Zhou, Y., Xiao, S., He, C., Huang, Z., Li, H.: Auto-conditioned recurrent networks for extended complex human motion synthesis. arXiv preprint arXiv:1707.05363 (2017)

  54. Liu, W., Liang, X., Zheng, M.: Dynamic model informed human motion prediction based on unscented kalman filter. In: IEEE/ASME Transactions on Mechatronics. vol. 27, pp. 5287–5295 (2022)

    Google Scholar 

  55. Liu, Z., Lyu, K., Wu, S., Chen, H., Hao, Y., Ji, S.: Aggregated multi-gans for controlled 3d human motion prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 2225–2232 (2021)

    Google Scholar 

  56. Liu, Z., Su, P., Wu, S., Shen, X., Chen, H., Hao, Y., Wang, M.: Motion prediction using trajectory cues. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13299–13308 (2021)

    Google Scholar 

  57. Liu, Z., Wu, S., Jin, S., Liu, Q., Ji, S., Lu, S., Cheng, L.: Investigating pose representations and motion contexts modeling for 3d motion prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  58. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: Inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11461–11471 (2022)

    Google Scholar 

  59. Lyu, K., Liu, Z., Wu, S., Chen, H., Zhang, X., Yin, Y.: Learning human motion prediction via stochastic differential equations. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 4976–4984 (2021)

    Google Scholar 

  60. Ma, H., Li, J., Hosseini, R., Tomizuka, M., Choi, C.: Multi-objective diverse human motion prediction with knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8161–8171 (2022)

    Google Scholar 

  61. Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6437–6446 (June 2022)

    Google Scholar 

  62. Mao, W., Liu, M., Salzmann, M.: History Repeats Itself: Human Motion Prediction via Motion Attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28

  63. Mao, W., Liu, M., Salzmann, M.: Generating smooth pose sequences for diverse human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13309–13318 (2021)

    Google Scholar 

  64. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9489–9497 (2019)

    Google Scholar 

  65. Mao, W., Liu, M., Salzmann, M.: History repeats itself: Human motion prediction via motion attention. In: European Conference on Computer Vision. pp. 474–489. Springer (2020)

    Google Scholar 

  66. Mao, W., Liu, M., Salzmann, M.: Generating smooth pose sequences for diverse human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13309–13318 (2021)

    Google Scholar 

  67. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9489–9497 (2019)

    Google Scholar 

  68. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2891–2900 (2017)

    Google Scholar 

  69. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2891–2900 (2017)

    Google Scholar 

  70. Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (potr): Human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2276–2284 (2021)

    Google Scholar 

  71. Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (potr): Human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2276–2284 (2021)

    Google Scholar 

  72. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning. pp. 8162–8171 (2021)

    Google Scholar 

  73. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning. pp. 1310–1318 (2013)

    Google Scholar 

  74. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems. vol. 32 (2019)

    Google Scholar 

  75. Pavllo, D., Grangier, D., Auli, M.: Quaternet: A quaternion-based recurrent model for human motion. In: arXiv preprint arXiv:1805.06485 (2018)

  76. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer (2017)

    Google Scholar 

  77. Qin, Z., Sun, W., Deng, H., Li, D., Wei, Y., Lv, B., Yan, J., Kong, L., Zhong, Y.: cosformer: Rethinking softmax in attention. In: International Conference on Learning Representations (2022)

    Google Scholar 

  78. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)

    Google Scholar 

  79. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation (2015)

    Google Scholar 

  80. Saadatnejad, S., Rasekh, A., Mofayezi, M., Medghalchi, Y., Rajabzadeh, S., Mordan, T., Alahi, A.: A generic diffusion-based approach for 3d human pose prediction in the wild. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). pp. 8246–8253 (2023)

    Google Scholar 

  81. Sajedi, S., Liu, W., Eltouny, K., Behdad, S., Zheng, M., Liang, X.: Uncertainty-assisted image-processing for human-robot close collaboration. In: IEEE Robotics and Automation Letters. vol. 7, pp. 4236–4243 (2022)

    Google Scholar 

  82. Sang, H.F., Chen, Z.Z., He, D.K.: Human motion prediction based on attention mechanism. Multimedia Tools and Applications 79(9), 5529–5544 (2020)

    Article  Google Scholar 

  83. Si, C., Huang, Z., Jiang, Y., Liu, Z.: Freeu: Free lunch in diffusion u-net (2023), https://arxiv.org/abs/2309.11497

  84. Sigal, L., Balan, A.O., Black, M.J.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vision 87(1), 4–27 (2010)

    Article  Google Scholar 

  85. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: arXiv preprint arXiv:2010.02502 (2020)

  86. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal attention model for human action recognition from skeleton data. In: Proceedings of the AAAI conference on artificial intelligence. vol. 31 (2017)

    Google Scholar 

  87. Su, P., Liu, Z., Wu, S., Zhu, L., Yin, Y., Shen, X.: Motion prediction via joint dependency modeling in phase space. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 713–721 (2021)

    Google Scholar 

  88. Tang, J., Sun, J., Lin, X., Zheng, W.S., Hu, J.F., et al.: Temporal continual learning with prior compensation for human motion prediction. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  89. Tanke, J., Zaveri, C., Gall, J.: Intention-based long-term human motion anticipation. In: 2021 International Conference on 3D Vision (3DV). pp. 596–605. IEEE (2021)

    Google Scholar 

  90. Tian, S., Liang, X., Zheng, M.: An optimization-based human behavior modeling and prediction for human-robot collaborative disassembly. In: 2023 American Control Conference (ACC). pp. 3356–3361 (2023)

    Google Scholar 

  91. Tian, S., Zheng, M., Liang, X.: Transfusion: A practical and effective transformer-based diffusion model for 3d human motion prediction (2023)

    Google Scholar 

  92. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  93. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by generating pose futures. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3332–3341 (2017)

    Google Scholar 

  94. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by generating pose futures. In: Proceedings of the IEEE international conference on computer vision. pp. 3332–3341 (2017)

    Google Scholar 

  95. Wang, J., Xu, H., Narasimhan, M., Wang, X.: Multi-person 3d motion prediction with multi-range transformers. In: Advances in Neural Information Processing Systems. vol. 34, pp. 6036–6049 (2021)

    Google Scholar 

  96. Wei, D., Sun, H., Li, B., Lu, J., Li, W., Sun, X., Hu, S.: Human joint kinematics diffusion-refinement for stochastic motion prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 6110–6118 (2023)

    Google Scholar 

  97. Xu, S., Wang, Y.X., Gui, L.Y.: Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors, p. 251–269. Springer Nature Switzerland (2022). https://doi.org/10.1007/978-3-031-20047-2_15

  98. Yan, X., Rastogi, A., Villegas, R., Sunkavalli, K., Shechtman, E., Hadap, S., Lee, H.: Mt-vae: Learning motion transformations to generate multimodal human dynamics. In: Proceedings of the European conference on computer vision (ECCV). pp. 265–281 (2018)

    Google Scholar 

  99. Yan, X., Rastogi, A., Villegas, R., Sunkavalli, K., Shechtman, E., Hadap, S., Yumer, E., Lee, H.: Mt-vae: Learning motion transformations to generate multimodal human dynamics. In: Proceedings of the European conference on computer vision (ECCV). pp. 265–281 (2018)

    Google Scholar 

  100. Yuan, Y., Kitani, K.: Diverse trajectory forecasting with determinantal point processes. In: arXiv preprint arXiv:1907.04967 (2019)

  101. Yuan, Y., Kitani, K.: Diverse trajectory forecasting with determinantal point processes. arXiv preprint arXiv:1907.04967 (2019)

  102. Yuan, Y., Kitani, K.: Dlow: Diversifying latent flows for diverse human motion prediction. In: European Conference on Computer Vision. pp. 346–364. Springer (2020)

    Google Scholar 

  103. Zhang, X., Yi, D., Behdad, S., Saxena, S.: Unsupervised human activity recognition learning for disassembly tasks. In: IEEE Transactions on Industrial Informatics (2023)

    Google Scholar 

  104. Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: Predicting how 3d bodies move. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3372–3382 (2021)

    Google Scholar 

  105. Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., Sun, X.: Explicit sparse transformer: Concentrated attention through explicit selection. arXiv preprint arXiv:1912.11637 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haosong Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6635 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Leong, M.C., Li, L., Lin, W. (2025). RD-Diff: RLTransformer -Based Diffusion Model with Diversity-Inducing Modulator for Human Motion Prediction. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15472. Springer, Singapore. https://doi.org/10.1007/978-981-96-0885-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0885-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0884-3

  • Online ISBN: 978-981-96-0885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics