Abstract
Human Motion Prediction (HMP) is crucial for human-robot collaboration, surveillance, and autonomous driving applications. Recently, diffusion models have shown promising progress due to their ease of training and realistic generation capabilities. To enhance both accuracy and diversity of the diffusion model in HMP, we present RD-Diff : RLTransformer -based Diffusion model with Diversity-inducing modulator. First, to improve transformer’s effectiveness on the frequency representation of human motion transformed by Discrete Cosine Transform (DCT), we introduce a novel Regulated Linear Transformer (RLTransformer ) with a specially designed linear-attention mechanism. Next, to further enhance the performance, we propose a Diversity-Inducing Modulator (DIM ) to generate noise-modulated observation conditions for a pretrained diffusion model. Experimental results show that our RD-Diff establishes a new state-of-the-art performance on both accuracy and diversity compared to existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, H., Mascaro, E.V., Lee, D.: Can we use diffusion probabilistic models for 3d motion prediction? In: arXiv preprint arXiv:2302.14503 (2023)
Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3d human motion prediction. In: 2021 International Conference on 3D Vision (3DV). pp. 565–574 (2021)
Aksan, E., Cao, P., Kaufmann, M., Hilliges, O.: Attention, please: A spatio-temporal transformer for 3d human motion prediction. arXiv preprint arXiv:2004.086922(3), 5 (2020)
Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3d human motion prediction. In: 2021 International Conference on 3D Vision (3DV). pp. 565–574. IEEE (2021)
Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3d human motion modelling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 7144–7153 (2019)
Aliakbarian, S., Saleh, F., Petersson, L., Gould, S., Salzmann, M.: Contextually plausible and diverse 3d human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11333–11342 (2021)
Aliakbarian, S., Saleh, F.S., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5223–5232 (2020)
Barquero, G., Escalera, S., Palmero, C.: Belfusion: Latent diffusion for behavior-driven human motion prediction. In: arXiv preprint arXiv:2211.14304 (2022)
Barsoum, E., Kender, J., Liu, Z.: Hp-gan: Probabilistic 3d human motion prediction via gan. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1418–1427 (2018)
Barsoum, E., Kender, J., Liu, Z.: Hp-gan: Probabilistic 3d human motion prediction via gan. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 1418–1427 (2018)
Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a “best of many” sample objective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8485–8493 (2018)
Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a “best of many” sample objective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8485–8493 (2018)
Bouazizi, A., Holzbock, A., Kressel, U., Dietmayer, K., Belagiannis, V.: Motionmixer: Mlp-based 3d human body pose forecasting. In: arXiv preprint arXiv:2207.00499 (2022)
Cai, H., Gan, C., Han, S.: Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition. arXiv preprint arXiv:2205.14756 (2022)
Cai, H., Li, J., Hu, M., Gan, C., Han, S.: Efficientvit: Multi-scale linear attention for high-resolution dense prediction (2024)
Cai, Y., Huang, L., Wang, Y., Cham, T.-J., Cai, J., Yuan, J., Liu, J., Yang, X., Zhu, Y., Shen, X., Liu, D., Liu, J., Thalmann, N.M.: Learning Progressive Joint Propagation for Human Motion Prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14
Cai, Y., Huang, L., Wang, Y., Cham, T.J., Cai, J., Yuan, J., Liu, J., Yang, X., Zhu, Y., Shen, X., et al.: Learning progressive joint propagation for human motion prediction. In: European Conference on Computer Vision. pp. 226–242. Springer (2020)
Cai, Y., Wang, Y., Zhu, Y., Cham, T.J., Cai, J., Yuan, J., Liu, J., Zheng, C., Yan, S., Ding, H., et al.: A unified 3d human motion synthesis model via conditional variational auto-encoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11645–11655 (2021)
Chen, L.H., Zhang, J., Li, Y., Pang, Y., Xia, X., Liu, T.: Humanmac: Masked motion completion for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 9544–9555 (October 2023)
Chiu, H.k., Adeli, E., Wang, B., Huang, D.A., Niebles, J.C.: Action-agnostic human pose forecasting. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1423–1432. IEEE (2019)
Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F.: Context-aware human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6992–7001 (2020)
Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion models in vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10850–10869 (2023). https://doi.org/10.1109/tpami.2023.3261988
Cui, Q., Sun, H.: Towards accurate 3d human motion prediction from incomplete observations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4801–4810 (2021)
Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3d human motion prediction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 6519–6527 (2020)
Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11467–11476 (2021)
Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Diverse human motion prediction via gumbel-softmax sampling from an auxiliary space. In: Proceedings of the 30th ACM International Conference on Multimedia. pp. 5162–5171 (2022)
Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11467–11476 (2021)
Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. In: Advances in Neural Information Processing Systems. vol. 34, pp. 8780–8794 (2021)
Dilokthanakul, N., Mediano, P.A., Garnelo, M., Lee, M.C., Salimbeni, H., Arulkumaran, K., Shanahan, M.: Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4346–4354 (2015)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE international conference on computer vision. pp. 4346–4354 (2015)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)
Gu, C., Yu, J., Zhang, C.: Learning disentangled representations for controllable human motion prediction. Pattern Recogn. 146, 109998 (2024)
Guo, W., Du, Y., Shen, X., Lepetit, V., Alameda-Pineda, X., Moreno-Noguer, F.: Back to mlp: A simple baseline for human motion prediction. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 4809–4819 (2023)
Gurumurthy, S., Kiran Sarvadevabhatla, R., Venkatesh Babu, R.: Deligan: Generative adversarial networks for diverse and limited data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 166–174 (2017)
Gurumurthy, S., Kiran Sarvadevabhatla, R., Venkatesh Babu, R.: Deligan: Generative adversarial networks for diverse and limited data. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 166–174 (2017)
Han, D., Pan, X., Han, Y., Song, S., Huang, G.: Flatten transformer: Vision transformer using focused linear attention (2023)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems. vol. 33, pp. 6840–6851 (2020)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence 36(7), 1325–1339 (2013)
Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-rnn: Deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5308–5317 (2016)
Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast autoregressive transformers with linear attention. In: International Conference on Machine Learning. pp. 5156–5165. PMLR (2020)
Khayam, S.A.: The discrete cosine transform (dct): theory and application. Michigan State University 114(1), 31 (2003)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Kundu, J.N., Gor, M., Babu, R.V.: Bihmp-gan: Bidirectional 3d human motion prediction gan. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 8553–8560 (2019)
Lee, M.L., Behdad, S., Liang, X., Zheng, M.: Task allocation and planning for product disassembly with human–robot collaboration. In: Robotics and Computer-Integrated Manufacturing. vol. 76, p. 102306 (2022)
Lee, M.L., Liu, W., Behdad, S., Liang, X., Zheng, M.: Robot-assisted disassembly sequence planning with real-time human motion prediction. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems. vol. 53, pp. 438–450 (2022)
Li, B., Tian, J., Zhang, Z., Feng, H., Li, X.: Multitask non-autoregressive model for human motion prediction. IEEE Trans. Image Process. 30, 2562–2574 (2020)
Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3d skeleton-based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 214–223 (2020)
Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Symbiotic graph neural networks for 3d skeleton-based human action recognition and motion prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)
Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 214–223 (2020)
Li, R., Su, J., Duan, C., Zheng, S.: Linear attention mechanism: An efficient attention for semantic segmentation (2020), https://arxiv.org/abs/2007.14902
Li, Z., Zhou, Y., Xiao, S., He, C., Huang, Z., Li, H.: Auto-conditioned recurrent networks for extended complex human motion synthesis. arXiv preprint arXiv:1707.05363 (2017)
Liu, W., Liang, X., Zheng, M.: Dynamic model informed human motion prediction based on unscented kalman filter. In: IEEE/ASME Transactions on Mechatronics. vol. 27, pp. 5287–5295 (2022)
Liu, Z., Lyu, K., Wu, S., Chen, H., Hao, Y., Ji, S.: Aggregated multi-gans for controlled 3d human motion prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 2225–2232 (2021)
Liu, Z., Su, P., Wu, S., Shen, X., Chen, H., Hao, Y., Wang, M.: Motion prediction using trajectory cues. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13299–13308 (2021)
Liu, Z., Wu, S., Jin, S., Liu, Q., Ji, S., Lu, S., Cheng, L.: Investigating pose representations and motion contexts modeling for 3d motion prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: Inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11461–11471 (2022)
Lyu, K., Liu, Z., Wu, S., Chen, H., Zhang, X., Yin, Y.: Learning human motion prediction via stochastic differential equations. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 4976–4984 (2021)
Ma, H., Li, J., Hosseini, R., Tomizuka, M., Choi, C.: Multi-objective diverse human motion prediction with knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8161–8171 (2022)
Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6437–6446 (June 2022)
Mao, W., Liu, M., Salzmann, M.: History Repeats Itself: Human Motion Prediction via Motion Attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28
Mao, W., Liu, M., Salzmann, M.: Generating smooth pose sequences for diverse human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13309–13318 (2021)
Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9489–9497 (2019)
Mao, W., Liu, M., Salzmann, M.: History repeats itself: Human motion prediction via motion attention. In: European Conference on Computer Vision. pp. 474–489. Springer (2020)
Mao, W., Liu, M., Salzmann, M.: Generating smooth pose sequences for diverse human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13309–13318 (2021)
Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9489–9497 (2019)
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2891–2900 (2017)
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2891–2900 (2017)
Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (potr): Human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2276–2284 (2021)
Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (potr): Human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2276–2284 (2021)
Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning. pp. 8162–8171 (2021)
Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning. pp. 1310–1318 (2013)
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems. vol. 32 (2019)
Pavllo, D., Grangier, D., Auli, M.: Quaternet: A quaternion-based recurrent model for human motion. In: arXiv preprint arXiv:1805.06485 (2018)
Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer (2017)
Qin, Z., Sun, W., Deng, H., Li, D., Wei, Y., Lv, B., Yan, J., Kong, L., Zhong, Y.: cosformer: Rethinking softmax in attention. In: International Conference on Learning Representations (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation (2015)
Saadatnejad, S., Rasekh, A., Mofayezi, M., Medghalchi, Y., Rajabzadeh, S., Mordan, T., Alahi, A.: A generic diffusion-based approach for 3d human pose prediction in the wild. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). pp. 8246–8253 (2023)
Sajedi, S., Liu, W., Eltouny, K., Behdad, S., Zheng, M., Liang, X.: Uncertainty-assisted image-processing for human-robot close collaboration. In: IEEE Robotics and Automation Letters. vol. 7, pp. 4236–4243 (2022)
Sang, H.F., Chen, Z.Z., He, D.K.: Human motion prediction based on attention mechanism. Multimedia Tools and Applications 79(9), 5529–5544 (2020)
Si, C., Huang, Z., Jiang, Y., Liu, Z.: Freeu: Free lunch in diffusion u-net (2023), https://arxiv.org/abs/2309.11497
Sigal, L., Balan, A.O., Black, M.J.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vision 87(1), 4–27 (2010)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: arXiv preprint arXiv:2010.02502 (2020)
Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal attention model for human action recognition from skeleton data. In: Proceedings of the AAAI conference on artificial intelligence. vol. 31 (2017)
Su, P., Liu, Z., Wu, S., Zhu, L., Yin, Y., Shen, X.: Motion prediction via joint dependency modeling in phase space. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 713–721 (2021)
Tang, J., Sun, J., Lin, X., Zheng, W.S., Hu, J.F., et al.: Temporal continual learning with prior compensation for human motion prediction. Advances in Neural Information Processing Systems 36 (2024)
Tanke, J., Zaveri, C., Gall, J.: Intention-based long-term human motion anticipation. In: 2021 International Conference on 3D Vision (3DV). pp. 596–605. IEEE (2021)
Tian, S., Liang, X., Zheng, M.: An optimization-based human behavior modeling and prediction for human-robot collaborative disassembly. In: 2023 American Control Conference (ACC). pp. 3356–3361 (2023)
Tian, S., Zheng, M., Liang, X.: Transfusion: A practical and effective transformer-based diffusion model for 3d human motion prediction (2023)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)
Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by generating pose futures. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3332–3341 (2017)
Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by generating pose futures. In: Proceedings of the IEEE international conference on computer vision. pp. 3332–3341 (2017)
Wang, J., Xu, H., Narasimhan, M., Wang, X.: Multi-person 3d motion prediction with multi-range transformers. In: Advances in Neural Information Processing Systems. vol. 34, pp. 6036–6049 (2021)
Wei, D., Sun, H., Li, B., Lu, J., Li, W., Sun, X., Hu, S.: Human joint kinematics diffusion-refinement for stochastic motion prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 6110–6118 (2023)
Xu, S., Wang, Y.X., Gui, L.Y.: Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors, p. 251–269. Springer Nature Switzerland (2022). https://doi.org/10.1007/978-3-031-20047-2_15
Yan, X., Rastogi, A., Villegas, R., Sunkavalli, K., Shechtman, E., Hadap, S., Lee, H.: Mt-vae: Learning motion transformations to generate multimodal human dynamics. In: Proceedings of the European conference on computer vision (ECCV). pp. 265–281 (2018)
Yan, X., Rastogi, A., Villegas, R., Sunkavalli, K., Shechtman, E., Hadap, S., Yumer, E., Lee, H.: Mt-vae: Learning motion transformations to generate multimodal human dynamics. In: Proceedings of the European conference on computer vision (ECCV). pp. 265–281 (2018)
Yuan, Y., Kitani, K.: Diverse trajectory forecasting with determinantal point processes. In: arXiv preprint arXiv:1907.04967 (2019)
Yuan, Y., Kitani, K.: Diverse trajectory forecasting with determinantal point processes. arXiv preprint arXiv:1907.04967 (2019)
Yuan, Y., Kitani, K.: Dlow: Diversifying latent flows for diverse human motion prediction. In: European Conference on Computer Vision. pp. 346–364. Springer (2020)
Zhang, X., Yi, D., Behdad, S., Saxena, S.: Unsupervised human activity recognition learning for disassembly tasks. In: IEEE Transactions on Industrial Informatics (2023)
Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: Predicting how 3d bodies move. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3372–3382 (2021)
Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., Sun, X.: Explicit sparse transformer: Concentrated attention through explicit selection. arXiv preprint arXiv:1912.11637 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, H., Leong, M.C., Li, L., Lin, W. (2025). RD-Diff: RLTransformer -Based Diffusion Model with Diversity-Inducing Modulator for Human Motion Prediction. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15472. Springer, Singapore. https://doi.org/10.1007/978-981-96-0885-0_12
Download citation
DOI: https://doi.org/10.1007/978-981-96-0885-0_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0884-3
Online ISBN: 978-981-96-0885-0
eBook Packages: Computer ScienceComputer Science (R0)