Abstract
Structure-aware CT reconstruction from a single or biplanar X-rays produces patient-specific 3D insights into underlying structures, pushing the radiation hazards during diagnosis and treatment to a minimum. Existing implicit neural fields (INF) methods have shown impressive performance in CT reconstruction, though they rely on multi-view X-rays and conduct subject-specific reconstruction. Additional online adaptation is required to handle novel subjects. In this paper, we present the generalizable structure-aware implicit neural fields (GSA-INF), a unified model that learns a generalizable structure-aware volume prior to INF decoding from sparse-view X-rays. Previous CoderNeRF views the latent code as a holistic shape prior to 3D reconstruction. In contrast, we present a new triplane generative model to learn a generalizable volume prior distribution, where the sampled triplane latent code produces voxel-level representation for INF decoding and CT reconstruction. Moreover, we introduce anatomical structure mask supervision by building a parallel INF-based decoding framework that enhances structure disentanglements when popping up a variety of structures from 2D X-rays. Our approach entails simultaneous INF-based CT reconstruction and volume-prior learning. In the online inference process, we can conditionally reconstruct CT from single- or biplanar-view X-rays and unconditionally generate CTs via sampling in the latent space. GSA-INF demonstrates robust and superior results over the compared methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armato, S.G., Mclennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D., Henschke, C.I., Hoffman, E.A., Kazerooni, E.A., MacMahon, H., van Beek, E.J.R., Yankelevitz, D., Biancardi, A.M., Bland, P.H., Brown, M.S., Engelmann, R.M., Laderach, G.E., Max, D., Pais, R.C., Qing, D.P.Y., Roberts, R.Y., Smith, A.R., Starkey, A., Batra, P., Caligiuri, P., Farooqi, A.O., Gladish, G.W., Jude, C.M., Munden, R., Petkovska, I., Quint, L.E., Schwartz, L.H., Sundaram, B., Dodd, L.E., Fenimore, C., Gur, D., Petrick, N., Freymann, J.B., Kirby, J., Hughes, B., Casteele, A.V., Gupte, S., Sallam, M., Heath, M.D., Kuhn, M.H., Dharaiya, E., Burns, R., Fryd, D., Salganicoff, M., Anand, V., Shreter, U., Vastagh, S., Croft, B.Y., Clarke, L.P.: The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Med. Phys. 38(2), 915–31 (2011)
Athar, S., Shu, Z., Samaras, D.: Flame-in-nerf : Neural control of radiance fields for free view face animation. ArXiv abs/2108.04913 (2021)
Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans. ArXiv abs/1801.01401 (2018)
Chen, H., Zhang, Y., Chen, Y., Zhang, J., Zhang, W., Sun, H., Lv, Y., Liao, P., Zhou, J., Wang, G.: Learn: Learned experts assessment-based reconstruction network for sparse-data ct. IEEE Trans. Med. Imag. 37, 1333–1347 (2018)
Chen, H., Gu, J., Chen, A., Tian, W., Tu, Z., Liu, L., Su, H.: Single-stage diffusion nerf: A unified approach to 3d generation and reconstruction. IEEE/CVF International Conference on Computer Vision (ICCV) pp. 2416–2425 (2023)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5932–5941 (2019)
Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H.P.H., Willcocks, C.G.: Mednerf: Medical neural radiance fields for reconstructing 3d-aware ct-projections from a single x-ray. 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) pp. 3843–3848 (2022)
Eyndhoven, G.V., Batenburg, K.J., Kazantsev, D., Nieuwenhove, V.V., Lee, P., Dobson, K., Sijbers, J.: An iterative ct reconstruction algorithm for fast fluid flow imaging. IEEE Trans. Image Process. 24, 4446–4458 (2015)
Fang, Y., Mei, L., Li, C., Liu, Y., Wang, W., Cui, Z., Shen, D.: Snaf: Sparse-view cbct reconstruction with neural attenuation fields. ArXiv abs/2211.17048 (2022)
Folkerts, M.M.: drrsuite. In: https://code.google.com/archive/p/drrsuite/
Fu, J., Dong, J., Zhao, F.: A deep learning reconstruction framework for differential phase-contrast computed tomography with incomplete data. IEEE Trans. Image Process. 29, 2190–2202 (2020)
Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 8645–8654 (2021)
Gao, C., Shih, Y., Lai, W.S., Liang, C.K., Huang, J.B.: Portrait neural radiance fields from a single image. ArXiv abs/2012.05903 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778 (2016)
Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3d volumes from 2d cranial x-rays. Computer Graphics Forum 37 (2018)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Neural Information Processing Systems (2017)
Jang, W.J., de Agapito, L.: Codenerf: Disentangled neural radiance fields for object categories. IEEE/CVF International Conference on Computer Vision (ICCV) pp. 12929–12938 (2021)
Jiang, Y., Pei, Y., Li, P., Zhang, Y., Guo, Y., Fan, Y., Chen, G., Dai, F., Xu, T., Yuan, X., yan Zha, H.: Craniofacial volumetric image estimation from a lateral cephalogram using cross-dimensional discrete embedding mapping. IEEE Transactions on Computational Imaging 8, 972–985 (2022)
Jiang, Y., Yuan, X., Pei, Y.: Spatially-consistent implicit volumetric function for uni- and bi-planar x-ray-based computed tomography reconstruction. IEEE 20th International Symposium on Biomedical Imaging (ISBI) pp. 1–5 (2023)
Liu, J., Anirudh, R., Thiagarajan, J.J., He, S., Mohan, K.A., Kamilov, U.S., Kim, H.: Dolce: A model-based probabilistic diffusion framework for limited-angle ct reconstruction. IEEE/CVF International Conference on Computer Vision (ICCV) pp. 10464–10474 (2022)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-based 3d reasoning. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 7707–7716 (2019)
Montoya, J., Zhang, C., Li, K., Chen, G.H.: Volumetric scout ct images reconstructed from conventional two-view radiograph localizers using deep learning. In: Physics of Medical Imaging. vol. 10948 (2019)
Muller, N., Siddiqui, Y., Porzi, L., Bulò, S.R., Kontschieder, P., Nießner, M.: Diffrf: Rendering-guided 3d radiance field diffusion. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4328–4338 (2022)
Müller, N., Simonelli, A., Porzi, L., Bulò, S.R., Nießner, M., Kontschieder, P.: Autorf: Learning 3d object radiance fields from single view observations. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3961–3970 (2022)
Niemeyer, M., Mescheder, L.M., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3501–3512 (2020)
Preiswerk, F., Toews, M., Cheng, C.C., yuan George Chiou, J., Mei, C.S., Schaefer, L., Hoge, W.S., Schwartz, B.M., Panych, L., Madore, B.: Hybrid mri ultrasound acquisitions, and scannerless realtime imaging. Magnetic Resonance in Medicine 78, 897”C908 (2017)
Reed, A.W., Kim, H., Anirudh, R., Mohan, K.A., Champley, K.M., Kang, J., Jayasuriya, S.: Dynamic ct reconstruction from limited views with implicit neural representations and parametric motion fields. IEEE/CVF International Conference on Computer Vision (ICCV) pp. 2238–2248 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. ArXiv abs/1505.04597 (2015)
Rückert, D., Wang, Y., Li, R., Idoughi, R., Heidrich, W.: Neat: Neural adaptive tomography. ACM Trans. Graph. 41, 55:1–55:13 (2022)
Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The luna16 challenge. Med. Image Anal. 42, 1–13 (2016)
Shen, L., Pauly, J.M., Xing, L.: Nerp: Implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE transactions on neural networks and learning systems (2021)
Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat. Biomed. Eng. 3, 880–888 (2019)
Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: Continuous 3d-structure-aware neural scene representations. ArXiv abs/1906.01618 (2019)
Song, B., Shen, L., Xing, L.: Piner: Prior-informed implicit neural representation learning for test-time adaptation in sparse-view ct reconstruction. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) pp. 1928–1937 (2023)
Syben, C., Michen, M., Stimpel, B., Seitz, S., Ploner, S.B., Maier, A.K.: Pyro-nn: Python reconstruction operators in neural networks. Med. Phys. 46, 5110–5115 (2019)
Vasconcelos, F., He, B., Singh, N., Teh, Y.W.: Uncertainr: Uncertainty quantification of end-to-end implicit neural representations for computed tomography. ArXiv abs/2202.10847 (2022)
Wang, D., Chandran, P., Zoss, G., Bradley, D., Gotardo, P.F.U.: Morf: Morphable radiance fields for multiview neural head modeling. ACM SIGGRAPH 2022 Conference Proceedings (2022)
Wu, Y., Ma, Y., Capaldi, D.P.I., Liu, J., Zhao, W., Du, J., Xing, L.: Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled mri. Magnetic resonance imaging (2019)
Würfl, T., Hoffmann, M., Christlein, V., Breininger, K., Huang, Y., Unberath, M., Maier, A.K.: Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imag. 37, 1454–1463 (2018)
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: Disn: Deep implicit surface network for high-quality single-view 3d reconstruction. In: NeurIPS (2019)
Ying, X., Guo, H., Ma, K., Wu, J.Y., Weng, Z., Zheng, Y.: X2ct-gan: Reconstructing ct from biplanar x-rays with generative adversarial networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 10611–10620 (2019)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from one or few images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: Intratomo: Self-supervised learning-based tomography via sinogram synthesis and prediction. IEEE/CVF International Conference on Computer Vision (ICCV) pp. 1940–1950 (2021)
Zha, R., Zhang, Y., Li, H.: Naf: Neural attenuation fields for sparse-view cbct reconstruction. ArXiv abs/2209.14540 (2022)
Zhu, B., Liu, J.Z., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018)
Zhuang, Y., Zhu, H., Sun, X., Cao, X.: Mofanerf: Morphable facial neural radiance field. In: European Conference on Computer Vision (2021)
Acknowledgments
This work was supported in part by National Natural Science Foundation of China under Grant 62272011 and 61876008, Beijing Natural Science Foundation 7232337.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huang, B., Pei, Y. (2025). Generalizable Structure-Aware INF: Biplanar-View CT Reconstruction via Disentangled Implicit Neural Field. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15472. Springer, Singapore. https://doi.org/10.1007/978-981-96-0885-0_9
Download citation
DOI: https://doi.org/10.1007/978-981-96-0885-0_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0884-3
Online ISBN: 978-981-96-0885-0
eBook Packages: Computer ScienceComputer Science (R0)