Skip to main content

EDAF: Early Detection of Atrial Fibrillation from Post-stroke Brain MRI

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

Atrial fibrillation (AF) is a common cause of ischemic stroke, accounting for up to one-third of all cases. Untreated AF can increase the risk of stroke by up to five times and make stroke recurrence more likely. Anticoagulation has proven beneficial in reducing stroke risk. However, AF is often paroxysmal and asymptomatic, remaining undetected and undiagnosed in up to 30% of cases. The current methods for AF detection are usually lengthy (cardiac monitoring), expensive (smart devices), or invasive (implantable cardiac monitors), limiting their routine use. We present a novel method to screen for AF by analyzing infarct patterns of stroke patients from brain magnetic resonance imaging (MRI) scans. We propose EDAF, a novel method based on the segment anything model (SAM) that leverages the power of a foundational deep learning model to efficiently analyze brain MRI and identify whether the underlying stroke etiology is AF. EDAF is trained and validated using a retrospectively acquired dataset of 235 post-stroke patients, achieving an area under the receiver operating characteristic (AUROC) of \(83.08\% \pm 2.96\% \) in identifying the presence of AF. EDAF can achieve optimal solutions with minimal training, highlighting its potential for use in low-resource settings. As MRI is readily available in stroke centers and routinely performed on many patients after a stroke, either during their admission or as an outpatient, the proposed method can effectively identify patients for further AF investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams Jr, H.P., Bendixen, B.H., Kappelle, L.J., Biller, J., Love, B.B., Gordon, D.L., Marsh 3rd, E.: Classification of subtype of acute ischemic stroke. definitions for use in a multicenter clinical trial. toast. trial of org 10172 in acute stroke treatment. stroke 24(1), 35–41 (1993)

    Google Scholar 

  2. Amarenco, P., Bogousslavsky, J., Caplan, L., Donnan, G., Hennerici, M.: New approach to stroke subtyping: the asco (phenotypic) classification of stroke. Cerebrovasc. Dis. 27(5), 502–508 (2009)

    Article  Google Scholar 

  3. Arsava, E.M., Helenius, J., Avery, R., Sorgun, M.H., Kim, G.M., Pontes-Neto, O.M., Park, K.Y., Rosand, J., Vangel, M., Ay, H.: Assessment of the predictive validity of etiologic stroke classification. JAMA Neurol. 74(4), 419–426 (2017)

    Article  Google Scholar 

  4. Ay, H., Benner, T., Murat Arsava, E., Furie, K.L., Singhal, A.B., Jensen, M.B., Ayata, C., Towfighi, A., Smith, E.E., Chong, J.Y., et al.: A computerized algorithm for etiologic classification of ischemic stroke: the causative classification of stroke system. Stroke 38(11), 2979–2984 (2007)

    Article  Google Scholar 

  5. Bang, O.Y., Lee, P.H., Joo, S.Y., Lee, J.S., Joo, I.S., Huh, K.: Frequency and mechanisms of stroke recurrence after cryptogenic stroke. Ann. Neurol. 54(2), 227–234 (2003)

    Article  Google Scholar 

  6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Fukamizu, S., Hojo, R., Kitamura, T., Kawamura, I., Miyazawa, S., Karashima, J., Nakamura, S., Takeda, K., Yamaoka, K., Arai, T., et al.: Recurrent ischemic stroke in patients with atrial fibrillation ablation and prior stroke: a study based on etiological classification. Journal of Arrhythmia 36(1), 95–104 (2020)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  9. He, S., Bao, R., Li, J., Grant, P.E., Ou, Y.: Accuracy of segment-anything model (sam) in medical image segmentation tasks. arXiv preprint arXiv:2304.09324 (2023)

  10. Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., Chen, R., Yu, J., Chen, J., Chen, C., et al.: Segment anything model for medical images? Med. Image Anal. 92, 103061 (2024)

    Article  Google Scholar 

  11. Kalarus, Z., Mairesse, G.H., Sokal, A., Boriani, G., Średniawa, B., Casado-Arroyo, R., Wachter, R., Frommeyer, G., Traykov, V., Dagres, N., et al.: Searching for atrial fibrillation: looking harder, looking longer, and in increasingly sophisticated ways. an ehra position paper. Europace 25(1), 185–198 (2023)

    Google Scholar 

  12. Kim, B.K., Park, S., Han, M.K., Hong, J.H., Lee, D.I., Yum, K.S.: Deep learning for prediction of mechanism in acute ischemic stroke using brain diffusion magnetic resonance image. Journal of Neurocritical Care 16(2), 85–93 (2023)

    Article  Google Scholar 

  13. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  14. Ko, Y., Lee, S., Chung, J.W., Han, M.K., Park, J.M., Kang, K., Park, T.H., Park, S.S., Cho, Y.J., Hong, K.S., et al.: Mri-based algorithm for acute ischemic stroke subtype classification. Journal of stroke 16(3), 161 (2014)

    Article  Google Scholar 

  15. Lee, K.J., Jung, K.H., Byun, J.I., Kim, J.M., Roh, J.K.: Infarct pattern and clinical outcome in acute ischemic stroke following middle cerebral artery occlusion. Cerebrovasc. Dis. 38(1), 31–38 (2014)

    Article  Google Scholar 

  16. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11976–11986 (2022)

    Google Scholar 

  17. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  18. Mazurowski, M.A., Dong, H., Gu, H., Yang, J., Konz, N., Zhang, Y.: Segment anything model for medical image analysis: an experimental study. Med. Image Anal. 89, 102918 (2023)

    Article  Google Scholar 

  19. McGrath, E.R., Kapral, M.K., Fang, J., Eikelboom, J.W., O’Conghaile, A., Canavan, M., O’Donnell, M.J., of the Ontario Stroke Registry, I., et al.: Association of atrial fibrillation with mortality and disability after ischemic stroke. Neurology 81(9), 825–832 (2013)

    Google Scholar 

  20. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  21. Penado, S., Cano, M., Acha, O., Hernández, J.L., Riancho, J.A.: Atrial fibrillation as a risk factor for stroke recurrence. Am. J. Med. 114(3), 206–210 (2003)

    Article  Google Scholar 

  22. Roy, S., Wald, T., Koehler, G., Rokuss, M.R., Disch, N., Holzschuh, J., Zimmerer, D., Maier-Hein, K.H.: Sam. md: Zero-shot medical image segmentation capabilities of the segment anything model. arXiv preprint arXiv:2304.05396 (2023)

  23. Singhal, A.B., Topcuoglu, M.A., Buonanno, F.S.: Acute ischemic stroke patterns in infective and nonbacterial thrombotic endocarditis: a diffusion-weighted magnetic resonance imaging study. Stroke 33(5), 1267–1273 (2002)

    Article  Google Scholar 

  24. Sposato, L.A., Andrade, J.: Prolonged cardiac monitoring for atrial fibrillation detection after stroke: in search of the elusive sweet spot (2022)

    Google Scholar 

  25. Tang, W., Zhang, H., Yu, P., Kang, H., Zhang, R.: Mmmna-net for overall survival time prediction of brain tumor patients. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). pp. 3805–3808. IEEE (2022)

    Google Scholar 

  26. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  27. Wu, J., Fu, R., Fang, H., Liu, Y., Wang, Z., Xu, Y., Jin, Y., Arbel, T.: Medical sam adapter: Adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620 (2023)

  28. Zhang, K., Liu, D.: Customized segment anything model for medical image segmentation. arXiv preprint arXiv:2304.13785 (2023)

  29. Zhang, Y., Shen, Z., Jiao, R.: Segment anything model for medical image segmentation: Current applications and future directions. Computers in Biology and Medicine p. 108238 (2024)

    Google Scholar 

  30. Zhang, Z., Lin, K., Wang, J., Ding, L., Sun, Y., Fu, C., Qian, D., Li, J., Huang, D.: Searching for underlying atrial fibrillation using artificial intelligence-assisted mri images from ischemic stroke patients. European Heart Journal 43(Supplement_2), ehac544–543 (2022)

    Google Scholar 

  31. Zhou, T., Fu, H., Zhang, Y., Zhang, C., Lu, X., Shen, J., Shao, L.: M\(^2\) net m 2 net: Multi-modal multi-channel network for overall survival time prediction of brain tumor patients. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II 23. pp. 221–231. Springer (2020)

    Google Scholar 

Download references

Acknowledgments

This research was supported by The University of Melbourne’s Research Computing Services and the Petascale Campus Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Shokri .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shokri, M.J., Desai, N., Rao, A.S., Sharobeam, A., Yan, B., Palaniswami, M. (2025). EDAF: Early Detection of Atrial Fibrillation from Post-stroke Brain MRI. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15473. Springer, Singapore. https://doi.org/10.1007/978-981-96-0901-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0901-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0900-0

  • Online ISBN: 978-981-96-0901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics