Skip to main content

Wavelet-Based Mamba with Fourier Adjustment for Low-Light Image Enhancement

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15475))

Included in the following conference series:

  • 175 Accesses

Abstract

Frequency information (e.g., Discrete Wavelet Transform and Fast Fourier Transform) has been widely applied to solve the issue of Low-Light Image Enhancement (LLIE). However, existing frequency-based models primarily operate in the simple wavelet or Fourier space of images, which lacks utilization of valid global and local information in each space. We found that wavelet frequency information is more sensitive to global brightness due to its low-frequency component while Fourier frequency information is more sensitive to local details due to its phase component. In order to achieve superior preliminary brightness enhancement by optimally integrating spatial channel information with low-frequency components in the wavelet transform, we introduce channel-wise Mamba, which compensates for the long-range dependencies of CNNs and has lower complexity compared to Diffusion and Transformer models. So in this work, we propose a novel Wavelet-based Mamba with Fourier Adjustment model called WalMaFa, consisting of a Wavelet-based Mamba Block (WMB) and a Fast Fourier Adjustment Block (FFAB). We employ an Encoder-Latent-Decoder structure to accomplish the end-to-end transformation. Specifically, WMB is adopted in the Encoder and Decoder to enhance global brightness while FFAB is adopted in the Latent to fine-tune local texture details and alleviate ambiguity. Extensive experiments demonstrate that our proposed WalMaFa achieves state-of-the-art performance with fewer computational resources and faster speed. Code is now available at: https://github.com/mcpaulgeorge/WalMaFa.

J. Tan and S. Pei—Contribute equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: One-stage retinex-based transformer for low-light image enhancement. In: ICCV (2023)

    Google Scholar 

  2. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: CVPR. pp. 3291–3300 (2018). https://doi.org/10.1109/CVPR.2018.00347

  3. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., Gao, W.: Pre-trained image processing transformer. In: CVPR. pp. 12294–12305 (2021https://doi.org/10.1109/CVPR46437.2021.01212

  4. Cui, Z., Li, K., Gu, L., Su, S., Gao, P., Jiang, Z., Qiao, Y., Harada, T.: You only need 90k parameters to adapt light: a light weight transformer for image enhancement and exposure correction. In: BMVC. BMVA Press (2022), https://bmvc2022.mpi-inf.mpg.de/0238.pdf

  5. Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023)

  6. Gu, A., Goel, K., Ré, C.: Efficiently modeling long sequences with structured state spaces. CoRR abs/2111.00396 (2021), https://arxiv.org/abs/2111.00396

  7. Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra, A., Ré, C.: Combining recurrent, convolutional, and continuous-time models with linear state space layers. In: Advances in Neural Information Processing Systems. pp. 572–585 (2021)

    Google Scholar 

  8. Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R.: Zero-reference deep curve estimation for low-light image enhancement. In: CVPR. pp. 1777–1786 (2020https://doi.org/10.1109/CVPR42600.2020.00185

  9. Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination map estimation. IEEE TIP 26(2), 982–993 (2017). https://doi.org/10.1109/TIP.2016.2639450

    Article  MathSciNet  Google Scholar 

  10. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE TIP 30, 2340–2349 (2021https://doi.org/10.1109/TIP.2021.3051462

  11. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. Computer Science (2014)

    Google Scholar 

  12. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation. In: ICIP. pp. 965–968 (2012https://doi.org/10.1109/ICIP.2012.6467022

  13. Li, C., Guo, C.L., Zhou, M., Liang, Z., Zhou, S., Feng, R., Loy, C.C.: Embeddingfourier for ultra-high-definition low-light image enhancement. In: ICLR (2023)

    Google Scholar 

  14. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: CVPR. pp. 10556–10565 (2021https://doi.org/10.1109/CVPR46437.2021.01042

  15. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE TIP 24(11), 3345–3356 (2015). https://doi.org/10.1109/TIP.2015.2442920

    Article  MathSciNet  Google Scholar 

  16. Nicholls, M.E.R.: Likert Scales. Corsini Encyclopedia of Psychology (2010)

    Google Scholar 

  17. Pei, S., Huang, J.: Slsnet: Weakly-supervised skin lesion segmentation network with self-attentions. In: PRICAI 2023. pp. 474–479. Springer Nature Singapore, Singapore (2024)

    Google Scholar 

  18. Vonikakis, V., Kouskouridas, R., Gasteratos, A.: On the evaluation of illumination compensation algorithms. Multimedia Tools and Applications 77, 1–21 (04 2018https://doi.org/10.1007/s11042-017-4783-x

  19. Wang, J., Zhuang, W., Shang, D.: Light enhancement algorithm optimization for autonomous driving vision in night scenes based on yolact++. In: ISPDS. pp. 417–423 (2022https://doi.org/10.1109/ISPDS56360.2022.9874070

  20. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: CVPR. pp. 6842–6850 (2019https://doi.org/10.1109/CVPR.2019.00701

  21. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP 22(9), 3538–3548 (2013). https://doi.org/10.1109/TIP.2013.2261309

    Article  Google Scholar 

  22. Wang, T., Zhang, K., Shen, T., Luo, W., Stenger, B., Lu, T.: Ultra-high-definition low-light image enhancement: A benchmark and transformer-based method. In: AAAI. AAAI’23, AAAI Press (2023https://doi.org/10.1609/aaai.v37i3.25364, https://doi.org/10.1609/aaai.v37i3.25364

  23. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: A general u-shaped transformer for image restoration. In: CVPR. pp. 17662–17672 (2022https://doi.org/10.1109/CVPR52688.2022.01716

  24. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement (2018)

    Google Scholar 

  25. Xu, J., Yuan, M., Yan, D.M., Wu, T.: Illumination guided attentive wavelet network for low-light image enhancement. IEEE TMM 25, 6258–6271 (2023https://doi.org/10.1109/TMM.2022.3207330

  26. Xu, X., Wang, R., Fu, C.W., Jia, J.: Snr-aware low-light image enhancement. In: CVPR. pp. 17693–17703 (2022https://doi.org/10.1109/CVPR52688.2022.01719

  27. Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.: Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE TIP 30, 2072–2086 (2021https://doi.org/10.1109/TIP.2021.3050850

  28. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.: Restormer: Efficient transformer for high-resolution image restoration. In: CVPR. pp. 5718–5729 (2022https://doi.org/10.1109/CVPR52688.2022.00564

  29. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: A practical low-light image enhancer. In: ACM MM. p. 1632-1640. MM ’19, Association for Computing Machinery, New York, NY, USA (2019https://doi.org/10.1145/3343031.3350926, https://doi.org/10.1145/3343031.3350926

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their invaluable comments. This work was partially funded by the National Natural Science Foundation of China under Grant No. 61975124, State Key Laboratory of Computer Architecture (ICT, CAS) under Grant No. CARCHA202111, Engineering Research Center of Software/Hardware Co-design Technology and Application, Ministry of Education, East China Normal University under Grant No. OP202202, and Open Project of Key Laboratory of Ministry of Public Security for Road Traffic Safety under Grant No. 2023ZDSYSKFKT04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songwen Pei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 632 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, J., Pei, S., Qin, W., Fu, B., Li, X., Huang, L. (2025). Wavelet-Based Mamba with Fourier Adjustment for Low-Light Image Enhancement. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15475. Springer, Singapore. https://doi.org/10.1007/978-981-96-0911-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0911-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0910-9

  • Online ISBN: 978-981-96-0911-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics