Skip to main content

IDDiffuse: Dual-Conditional Diffusion Model for Enhanced Facial Image Anonymization

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

The increasing prevalence of computer vision applications in public spaces has raised substantial privacy concerns regarding facial image data. Traditional anonymization methods, despite their potential, often suffer from drawbacks such as limited output variety, inadequate detail, distortions in extreme poses, and inconsistent temporal patterns. This study introduces an identity diffuser based on a dual-conditional diffusion model that efficiently anonymizes facial images while preserving task-relevant features for diverse applications. Our approach ensures a clear separation from the original identity by utilizing synthetic identities and an optimized identity feature space derived from three state-of-the-art models. It maintains consistency across frames for video anonymization. Unlike existing methods, our approach eliminates the need for task-relevant feature extractors, such as those for pose and expression. Instead, it employs a dual-condition diffusion model to integrate both identity and non-identity information, offering improved anonymization without compromising data usefulness. Our technique enables seamless transitions from real to synthetic identities by incorporating a time-step-dependent ID loss, providing controllable identity anonymization. Extensive studies demonstrate that our method achieves superior de-identification rates and consistency compared to state-of-the-art techniques, preserving non-identity features with a 20% improvement in emotion recognition, handling extreme poses with enhanced image quality, output diversity, and temporal consistency. This makes it a valuable tool for privacy-preserving computer vision applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For fair analysis and due to the unavailability of released code, we borrowed qualitative and quantitative results from [5] for comparison in our work. This ensures fair and consistent analysis, as altering the input images could impact the results.

References

  1. Legal text. general data protection regulation (gdpr). (2024, april 22). https://gdpr-info.eu/

  2. Barattin, S., Tzelepis, C., Patras, I., Sebe, N.: Attribute-preserving face dataset anonymization via latent code optimization pp. 8001–8010

    Google Scholar 

  3. Boutros, F., Huber, M., Siebke, P., Rieber, T., Damer, N.: Sface: Privacy-friendly and accurate face recognition using synthetic data. In: 2022 IEEE International Joint Conference on Biometrics (IJCB). pp. 1–11. IEEE (2022)

    Google Scholar 

  4. Bu, J., Jiang, R.L., Zheng, B.: Research on deepfake technology and its application. In: International Conference on Computing, Networks and Internet of Things (CNIOT). pp. 47–51 (2023)

    Google Scholar 

  5. Cai, Z., Gao, Z., Planche, B., Zheng, M., Chen, T., Asif, M.S., Wu, Z.: Disguise without disruption: Utility-preserving face de-identification. Conference on Artificial Intelligence (AAAI) p. 918-926 (2024)

    Google Scholar 

  6. Canada, G.: The personal information protection and electronic documents act (2021), https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/

  7. Cao, J., Liu, B., Wen, Y., Xie, R., Song, L.: Personalized and invertible face de-identification by disentangled identity information manipulation pp. 3334–3342

    Google Scholar 

  8. Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: An efficient framework for high fidelity face swapping. In: International Conference on Multimedia (ACMMM). pp. 2003–2011 (2020)

    Google Scholar 

  9. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4690–4699 (2019)

    Google Scholar 

  10. Gafni, O., Wolf, L., Taigman, Y.: Live face de-identification in video. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 9378–9387 (2019)

    Google Scholar 

  11. Gu, X., Luo, W., Ryoo, M.S., Lee, Y.J.: Password-Conditioned Anonymization and Deanonymization with Face Identity Transformers, p. 727-743 (2020)

    Google Scholar 

  12. He, X., Zhu, M., Chen, D., Wang, N., Gao, X.: Diff-privacy: Diffusion-based face privacy protection (2023)

    Google Scholar 

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems (NIPS), volume=33, pages=6840–6851, year=2020

    Google Scholar 

  14. Huang, G., Mattar, M., Lee, H., Learned-Miller, E.: Learning to align from scratch. Advances in Neural Information Processing Systems (NIPS), volume=25, year=2012

    Google Scholar 

  15. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition (2008)

    Google Scholar 

  16. Hukkelås, H., Lindseth, F.: Deepprivacy2: Towards realistic full-body anonymization pp. 1329–1338 (2020)

    Google Scholar 

  17. Hukkelås, H., Mester, R., Lindseth, F.: DeepPrivacy: A Generative Adversarial Network for Face Anonymization, p. 565-578. Springer International Publishing (2019)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4401–4410 (2019)

    Google Scholar 

  19. Kim, M., Jain, A.K., Liu, X.: Adaface: Quality adaptive margin for face recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 18750–18759 (2022)

    Google Scholar 

  20. Kim, M., Liu, F., Jain, A., Liu, X.: Dcface: Synthetic face generation with dual condition diffusion model. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12715–12725 (2023)

    Google Scholar 

  21. Kuang, Z., Yang, X., Shen, Y., Hu, C., Yu, J.: Facial identity anonymization via intrinsic and extrinsic attention distraction. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12406–12415 (2024)

    Google Scholar 

  22. Laishram, L., Shaheryar, M., Lee, J.T., Jung, S.K.: Toward a privacy-preserving face recognition system: A survey of leakages and solutions. ACM Computing Surveys (2024)

    Google Scholar 

  23. Li, J., Han, L., Chen, R., Zhang, H., Han, B., Wang, L., Cao, X.: Identity-preserving face anonymization via adaptively facial attributes obfuscation. In: International Conference on Multimedia (ACMMM). pp. 3891–3899 (2021)

    Google Scholar 

  24. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5074–5083 (2020)

    Google Scholar 

  25. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere embedding for face recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 212–220 (2017)

    Google Scholar 

  26. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: Inpainting using denoising diffusion probabilistic models. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 11461–11471 (2022)

    Google Scholar 

  27. Maximov, M., Elezi, I., Leal-Taixé, L.: Ciagan: Conditional identity anonymization generative adversarial networks. pp. 5447–5456 (2020)

    Google Scholar 

  28. Maximov, M., Elezi, I., Leal-Taixé, L.: Decoupling identity and visual quality for image and video anonymization. In: Asian Conference on Computer Vision (ACCV). pp. 3637–3653 (2022)

    Google Scholar 

  29. McPherson, R., Shokri, R., Shmatikov, V.: Defeating image obfuscation with deep learning. arXiv preprint arXiv:1609.00408 (2016)

  30. Neustaedter, C., Greenberg, S., Boyle, M.: Blur filtration fails to preserve privacy for home-based video conferencing. ACM Transactions on Computer-Human Interaction 13(1), 1–36 (2006)

    Article  Google Scholar 

  31. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)

    Article  Google Scholar 

  32. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. pp. 8162–8171. PMLR (2021)

    Google Scholar 

  33. Qiu, H., Yu, B., Gong, D., Li, Z., Liu, W., Tao, D.: Synface: Face recognition with synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10880–10890 (2021)

    Google Scholar 

  34. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251(2), 3 (2022)

  35. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. pp. 10684–10695 (2022)

    Google Scholar 

  36. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 815–823 (2015)

    Google Scholar 

  37. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  38. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  39. Westerlund, M.: The emergence of deepfake technology: A review. Technology innovation management review 9(11) (2019)

    Google Scholar 

  40. Zheng, Y., Yang, H., Zhang, T., Bao, J., Chen, D., Huang, Y., Yuan, L., Chen, D., Zeng, M., Wen, F.: General facial representation learning in a visual-linguistic manner. In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 18697–18709 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the IITP grant (IITP-2024-RS-2022-00156389) funded by MSIT, and the Digital Innovation Hub project (DBSD1-04) supervised by DIP, funded by MSIT and Daegu City, 2024. * MSIT: Ministry of Science and ICT

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ki Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaheryar, M., Taek Lee, J., Ki Jung, S. (2025). IDDiffuse: Dual-Conditional Diffusion Model for Enhanced Facial Image Anonymization. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15475. Springer, Singapore. https://doi.org/10.1007/978-981-96-0911-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0911-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0910-9

  • Online ISBN: 978-981-96-0911-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics