Abstract
Implementing secure two-party computation (2PC) protocols with floating-point numbers, balancing accuracy and efficiency, has been challenging. Despite advancements with SecFloat (in IEEE S&P’22) and Beacon (in USENIX Security’23), there is room for improvement in precision, efficiency and functionality. This paper introduces SecFloatPlus, which complements SecFloat with a new spline generation approach for implementing efficient and accurate 2PC-enabled mathematical functions. It significantly enhances accuracy, achieving up to \(1000 \times \) better performance for the hyperbolic tangent function (i.e., tanh) and \(6 \times \) better performance for the Gaussian Error Linear Unit (GELU) function, compared to Beacon. It also introduces precise inverse trigonometric functions (i.e., arcsin, arccos and arctan) which are never implemented by previous works. Besides, when integrated into secure transformer inference, SecFloatPlus outperforms SecFloat in runtime efficiency and communication cost for the SoftMax activation function, while maintaining precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
IEEE standard for floating-point arithmetic: IEEE Std 754–2008, pp. 1–70 (2008). https://doi.org/10.1109/IEEESTD.2008.4610935
Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers. In: 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California, USA, 24–27 February 2013. The Internet Society (2013). https://www.ndss-symposium.org/ndss2013/secure-computation-floating-point-numbers
Archer, D.W., Atapoor, S., Smart, N.P.: The cost of IEEE arithmetic in secure computation. In: International Conference on Cryptology and Information Security in Latin America, pp. 431–452. Springer (2021)
Blanton, M., Goodrich, M.T., Yuan, C.: Secure and accurate summation of many floating-point numbers. Proc. Priv. Enhanc. Technol. 2023(3), 432–445 (2023). https://doi.org/10.56553/POPETS-2023-0090
Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., Yalame, H.: Flute: fast and secure lookup table evaluations. In: Proceedings of IEEE S &P, pp. 515–533. IEEE (2023)
Burrus, C.S., Fox, J.W., Sitton, G.A., Treitel, S.: Horner’s method for evaluating and deflating polynomials. DSP Software Notes, Rice University (2003)
Catrina, O.: Evaluation of floating-point arithmetic protocols based on Shamir secret sharing. In: E-Business and Telecommunications: 16th International Conference, ICETE 2019, Prague, Czech Republic, 26–28 July 2019, Revised Selected Papers 16, pp. 108–131. Springer (2020)
Catrina, O.: Performance analysis of secure floating-point sums and dot products. In: 2020 13th International Conference on Communications (COMM), pp. 465–470. IEEE (2020)
Catrina, O.: Complexity and performance of secure floating-point polynomial evaluation protocols. In: Computer Security–ESORICS 2021: 26th European Symposium on Research in Computer Security, Darmstadt, Germany, 4–8 October 2021, Proceedings, Part II 26, pp. 352–369. Springer (2021)
Catrina, O., Dragulin, C.: Multiparty computation of fixed-point multiplication and reciprocal. In: 2009 20th International Workshop on Database and Expert Systems Application, pp. 107–111. IEEE (2009)
Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Financial Cryptography and Data Security: 14th International Conference, FC 2010, Tenerife, Canary Islands, 25–28 January 2010, Revised Selected Papers 14, pp. 35–50. Springer (2010)
Cody, W.J.: Software Manual for the Elementary Functions. Prentice-Hall Series in Computational Mathematics. Prentice-Hall, Inc. (1980)
Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S.: Automated synthesis of optimized circuits for secure computation. In: Proceedings of ACM CCS, pp. 1504–1517. Association for Computing Machinery (2015). https://doi.org/10.1145/2810103.2813678
Dimitrov, V., Kerik, L., Krips, T., Randmets, J., Willemson, J.: Alternative implementations of secure real numbers. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 553–564 (2016)
Edelman, A.: The mathematics of the pentium division bug. SIAM Rev. 39(1), 54–67 (1997)
Evans, D., Kolesnikov, V., Rosulek, M., et al.: A pragmatic introduction to secure multi-party computation. Found. Trends® Priv. Secur. 2(2-3), 70–246 (2018)
Fouque, P.A., Stern, J., Wackers, G.J.: Cryptocomputing with rationals. In: International Conference on Financial Cryptography, pp. 136–146. Springer (2002)
Franz, M., Deiseroth, B., Hamacher, K., Jha, S., Katzenbeisser, S., Schröder, H.: Secure computations on non-integer values. In: 2010 IEEE International Workshop on Information Forensics and Security, pp. 1–6. IEEE (2010)
Franz, M., Katzenbeisser, S.: Processing encrypted floating point signals. In: Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security, pp. 103–108 (2011)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328 (2019)
Granlund, T., Sjödin, G., Stallman, R., Riesel, H., Beuning, B., et al.: The gnu multiple precision arithmetic library (2020). https://gmplib.org/
Hanrot, G., Zimmermann, P., Lefèvre, V., Pélissier, P., Théveny, P., et al.: The gnu MPFR library (2023). https://www.mpfr.org/
Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and constructions. Springer, Heidelberg (2010)
Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)
Intel Corporation: Intel® oneAPI math kernel library (oneMKL) (2024). https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite collision analysis. Int. J. Inf. Secur. 14(6), 531–548 (2015)
Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Trans. Inf. Theory 29(1), 35–41 (1983). https://doi.org/10.1109/TIT.1983.1056621
Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer and floating-point arithmetic. In: Financial Cryptography and Data Security: FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, 26 February 2016, Revised Selected Papers 20, pp. 271–287. Springer (2016)
Le Lann, G.: An analysis of the Ariane 5 flight 501 failure-a system engineering perspective. In: Proceedings International Conference and Workshop on Engineering of Computer-Based Systems, pp. 339–346. IEEE (1997)
Lim, J.P., Nagarakatte, S.: High performance correctly rounded math libraries for 32-bit floating point representations. In: Proceedings of PLDI, pp. 359–374 (2021)
McKinley, S., Levine, M.: Cubic spline interpolation. Coll. Redwoods 45(1), 1049–1060 (1998)
Rathee, D., Bhattacharya, A., Gupta, D., Sharma, R., Song, D.: Secure floating-point training. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 6329–6346 (2023)
Rathee, D., Bhattacharya, A., Sharma, R., Gupta, D., Chandran, N., Rastogi, A.: SecFloat: accurate floating-point meets secure 2-party computation. In: Proceedings of IEEE S &P, pp. 576–595 (2022)
Rathee, D., et al.: SIRNN: a math library for secure RNN inference. In: Proceedings of IEEE S &P, pp. 1003–1020. IEEE (2021)
Rathee, D., et al.: CryptFlow2: practical 2-party secure inference. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 325–342 (2020)
Rathee, D., Rathee, M., Kumar, N., et al.: Ezpc (2022). https://github.com/mpc-msri/EzPC
Sibidanov, A., Zimmermann, P., Glondu, S.: The CORE-MATH project. In: 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH), pp. 26–34. IEEE (2022)
Sinnott, R.W.: Virtues of the haversine. Sky Telesc. 68(2), 158 (1984)
Smith, J.R.: Introduction to Geodesy: The History and Concepts of Modern Geodesy, vol. 1. Wiley, Hoboken (1997)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Šeděnka, J., Gasti, P.: Privacy-preserving distance computation and proximity testing on earth, done right. In: Proceedings of ACM CCS, ASIA CCS 2014, pp. 99–110. Association for Computing Machinery (2014). https://doi.org/10.1145/2590296.2590307
Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167 (1986). https://doi.org/10.1109/SFCS.1986.25
Acknowledgements
The work was supported in part by the National Natural Science Foundation of China (Nos. 62332007, U22B2028, 62302192, U23A20303 and 62032025), the Science and Technology Major Project of Tibetan Autonomous Region of China (No. XZ202201ZD0006G), the Natural Science Foundation of Guangdong Province (No. 2024A1515010086), and the Science and Technology Program of Guangzhou (No. 2024A04J3691), National Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy Protection, and Engineering Research Center of Trustworthy AI, Ministry of Education. The authors are very grateful to the anonymous reviewers for their detailed comments and suggestions regarding this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huang, T., Weng, J., Weng, J., Chen, M., Li, M. (2025). SecFloatPlus: More Accurate Floating-Point Meets Secure Two-Party Computation. In: Liu, J.K., Chen, L., Sun, SF., Liu, X. (eds) Provable and Practical Security. ProvSec 2024. Lecture Notes in Computer Science, vol 14903. Springer, Singapore. https://doi.org/10.1007/978-981-96-0954-3_1
Download citation
DOI: https://doi.org/10.1007/978-981-96-0954-3_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0953-6
Online ISBN: 978-981-96-0954-3
eBook Packages: Computer ScienceComputer Science (R0)